
A Parallel Algorithm for Correlating Event Streams

Daniel M. Zimmerman and K. Mani Chandy
Computer Science 256-80

California Institute of Technology
Pasadena, California 91125 USA

dmz@cs.caltech.edu mani@cs.caltech.edu

Abstract

This paper describes a parallel algorithm for correlat-
ing or “fusing” streams of data from sensors and other
sources of information. The algorithm is useful for ap-
plications where composite conditions over multiple data
streams must be detected rapidly, such as intrusion detec-
tion or crisis management. The implementation of this al-
gorithm on a multithreaded system and the performance of
this implementation are also briefly described.

1. Introduction

Many applications require near real-time correlation of
noisy data generated in large numbers of event streams.
The detection of potential bioterror incidents requires in-
tegration of information from emails and other texts, time-
varying incidence rates of diseases across the country, threat
analyses, and movements of possible terrorists. Dealing
with hurricanes requires tracking the hurricanes, tracking
ships and planes, monitoring the capacities of shelters and
hospitals, monitoring flood levels and road conditions, and
even tracking individuals using cell phones and RFID tags.
Other applications, such as money laundering detection and
intrusion detection, also require correlation of noisy hetero-
geneous data generated by large numbers of sources.

The increasing availability of events generated by RFID
readers and sensors of a multitude of types, event services
on the Web such as news feeds, events generated by ERP
applications, and data provided by the public allows orga-
nizations to sense threats and opportunities and respond ap-
propriately. Integrating multiple heterogeneous streams of
information in a timely fashion is a challenge that can be
handled by employing multiprocessor machines.

People in different roles in an organization may be con-
cerned about different threats and opportunities. In the af-
termath of a hurricane, public health workers are concerned
about issues such as hospital occupancy and blood supply;

electric utilities, on the other hand, are concerned about how
best to deploy their repair crews to restore power. The num-
ber of conditions that must be monitored can be very large.
Data fusion algorithms such as the one described in this
work can help integrate data streams and identify complex
conditions rapidly to enable timely responses.

Critical conditions—threats or opportunities—are spec-
ified as predicates over event stream histories. A predicate
defines a pattern; for example, a predicate could be that the
one-week moving point average rate of incidence of a dis-
ease in any county is two standard deviations away from a
regression model developed using data from a one-month
window in neighboring counties. The conditions are typi-
cally complex functions of event histories, and these func-
tions often use models such as statistical regressions, time
series analyses, clustering of points in multidimensional
spaces, and simulations of systems as diverse as boilers and
financial markets.

Each model or computational unit makes assumptions
about its environment and expects to be notified if these
assumptions are violated. As an example, consider a sys-
tem for pricing electrical energy. The system is comprised
of many models, such as models forecasting temperature
variation in the coming day, load on the power grid and fu-
ture prices. The model for power demand may assume that
temperature will vary in some fashion—for instance, 15°C
at midnight, 20°C in the early morning and 30°C at noon.
The power-demand model expects to receive an event if data
from a sensor or some other model indicates that its assump-
tions about future temperatures are wrong. If the tempera-
ture sensor measures temperature at midnight to be 10°C
when the power-demand model expects it to be 15°C, then
the sensor sends a message to the power-demand model and
the model adjusts its assumptions about temperature appro-
priately. The critical aspect of model composition is this: in-
formation is conveyed by the absence of events as well as
the presence of events.

Data fusion may be carried out by large networks of
complex models, but rates of events flowing between mod-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

els could be small if assumptions made by models are vio-
lated infrequently. Consider, for example, an application to
detect money laundering. One of the steps in the application
may be to detect anomalies in banking transactions, where
anomalies are defined as outlier points in a statistical regres-
sion model. We can construct the anomaly detector module
in two ways: (1) the module outputs a message for each in-
put message (banking transaction) that it receives, where
the output message is either that the transaction is anoma-
lous or that it is acceptable; or (2) the module outputs a mes-
sage only when it receives an anomalous transaction. If one
in a million transactions is anomalous then the rate of events
generated using the second option is only a millionth of that
generated using the first option. We will see later that the
second option causes race conditions in parallel implemen-
tations, and our challenge is to deal with such race condi-
tions effectively. A central aspect of our implementation is
that efficiency is obtained by exploiting the key fact that in-
formation can be conveyed by the absence of messages.

Event correlation is carried out by a network of com-
putational modules. Modules may execute models such as
simulations of boilers or analyses of stochastic differen-
tial equations representing financial systems. Since mod-
ules and events can be quite complex, the system is imple-
mented using object-oriented technology (Java) rather than
relational database technology and SQL.

This paper describes an algorithm for correlating multi-
ple data streams that can be implemented on a single mul-
tiprocessor machine. The algorithm is implemented in Java
1.5 and exploits the fact that compositions of complex mod-
els can compute efficiently with relatively low rates of inter-
model communication.

2. Problem Definition

The system that integrates and correlates multiple data
streams to detect threats and opportunities is called a data
fusion system or an event correlation system. We assume in
this paper that there is no delay between the instant at which
an event is generated and the instant at which it arrives at
the data fusion system. We also assume that each event has
a timestamp indicating the instant at which the event was
generated, and that timestamps are accurate. Thus, we as-
sume that all events with timestamp t reach the data fusion
system at time t. In reality, events may be delayed between
the sensor and data fusion system, and clocks used to deter-
mine timestamps may drift from each other resulting in er-
rors; we do not analyze errors in this paper.

Consider the sequence of events arriving at the data fu-
sion system. Assume that events arrive at times t1, t2, t3,
. . . . All events that arrive at the same time are considered
part of the same phase. Phases are indexed sequentially; all
events that arrive at time tk belong to phase k. The collec-

tion of events that arrive at phase k represents a snapshot of
the system and its environment at time tk. The data fusion
engine treats all the events in a given phase as being repre-
sentative of the same instant. One solution is to require the
data fusion engine to complete execution of one phase be-
fore initiating execution of the next phase. We describe a
more efficient solution, in which multiple phases are exe-
cuted concurrently but with the same logical effect as if they
were executed sequentially.

The computation in a data fusion system is represented
by an acyclic directed graph in which vertices represent
computational modules and edges represent information
flow between modules. Vertices without incoming edges are
called source vertices. Messages from information sources,
such as sensors, arrive at source vertices. Vertices without
output edges are sink vertices. Sink vertices are read by in-
put/output units outside the data fusion system. The compu-
tation of the data fusion system must be serializable; though
modules are executed concurrently, the logical effect must
be the same as executing only one phase at a time in se-
rial order all the way from the sources to the sinks.

3. A Parallel Algorithm

We wish to develop an efficient parallel algorithm, for
a shared-memory multiprocessor, to execute the computa-
tion graphs described in the previous section. The algorithm
should be able to execute multiple vertices concurrently, and
should also allow multiple phases of the computation to ex-
ecute concurrently. Essentially, the execution of the compu-
tation graph should be pipelined as much as possible. Fig-
ure 1 depicts a 10-node graph in which 5 phases are be-
ing executed concurrently, where nodes near the top of the
graph are executing earlier phases of the computation than
nodes near the bottom. In this section, we first discuss how
this pipelining can be accomplished; we then present a par-
allel algorithm that executes the computation graphs with
pipelining; finally, we present a correctness argument.

3.1. Pipelining

In order to pipeline the execution efficiently, we must de-
termine the parts of the computation that can execute con-
currently. Since the output of a particular vertex for a phase
p depends only on its inputs for phase p and its internal state,
any vertex for which all the inputs for phase p are known can
execute concurrently with other vertices for which all the in-
puts for phase p are known. Thus, a large part of the prob-
lem is to determine when the inputs for phase p for a partic-
ular vertex are known.

The obvious solution to this problem is to ensure that ev-
ery vertex receives a message on every one of its inputs dur-
ing every phase; then, whenever a vertex has messages with

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

phase 5

phase 4

phase 3

phase 2

phase 1

Figure 1. A 10-node graph in which 5 phases
are being executed concurrently.

phase p waiting on all its inputs, it can execute phase p. Un-
fortunately, this obvious solution is inefficient, because it re-
quires every vertex to both carry out a computation for ev-
ery phase and send a message on every one of its outputs for
every phase. It seems likely that, in the majority of compu-
tation graphs, only a small number of vertices will change
their outputs during any given phase of a computation; if
this is not the case, the idea of structuring the computation
as a graph may not be appropriate in the first place. It would
therefore be preferable to minimize the amount of compu-
tation and the number of messages sent.

The amount of computation can be minimized by mak-
ing vertices compute only when their inputs change. This
also reduces the number of messages sent, because a ver-
tex that doesn’t compute also doesn’t send messages. How-
ever, it makes detection of when all the inputs for a partic-
ular vertex are known for phase p more difficult, because
there is no guarantee that the vertex will receive messages
on all its inputs for phase p, and no reliable way to deter-
mine that it will not receive such messages. Assume vertex
v has two inputs, and receives a message for phase p on one
of them and nothing on the other. There is no way for v to
determine that it can execute phase p until it receives a mes-
sage for a later phase on its other input, but because v only
receives messages on its inputs when the outputs of other
vertices change, there is no guarantee that it will ever re-
ceive such a message. Thus, we need a way to determine
when v can execute phase p.

3.1.1. Vertex Numbering. To help determine when ver-
tices can safely execute, we assign indices to the vertices
in the graph such that they are topologically sorted; that
is, all edges in the graph are directed from lower-indexed
vertices to higher-indexed vertices. In an N -node graph,

these indices range from 1 to N . In addition to being topo-
logically sorted, we require the indices to satisfy an addi-
tional restriction. We first define this restriction and then
show how the restriction helps us determine when it is
safe for a given vertex to execute a given phase. The no-
tation we use for quantification throughout this paper is
〈op boundvars | ranges � expression〉, where op is an asso-
ciative and commutative operator with an identity element,
boundvars is the set of bound variables, ranges is a pred-
icate restricting the ranges of the bound variables, and ex-
pression is the expression to be quantified.

Assume that, in an N -node graph, the vertices are given
integer indices v, 1 ≤ v ≤ N . Let E(x, y) be true if there
is an edge directed from node x to node y, and false other-
wise, and let S(v) be defined as follows, for 0 ≤ v ≤ N :

S(v) = 〈∪w|〈∀u | E(u, w) � u ≤ v〉 � {w}〉 (1)

S(v) is the set of vertices all of whose predecessors are
indexed v or lower, and S(0) is (by inspection) the set of
vertices with no input edges; the vertices in S(0) are the
source vertices of the graph. Figure 2(a) shows a graph with
topologically sorted indices and its corresponding S values.

The additional restriction on vertex numbers is that, for
every v, the vertices in S(v) must be indexed sequentially
from 1 to |S(v)|. For example, in Figure 2(a), S(1) is
{1, 2, 3} and is indexed sequentially from 1 to 3. However,
S(2) is {1, 2, 3, 5} and is not indexed sequentially because
4 is missing. Therefore, the numbering of the graph in Fig-
ure 2(a), though topologically sorted, does not satisfy the
additional restriction.

Now, consider the graph in Figure 2(b), where vertices 4
and 5 are transposed. This numbering, which is also topo-
logically sorted, satisfies the additional restriction because
all the S(v) are indexed sequentially.

Let m(v) be the cardinality of S(v); then
for graphs that satisfy the additional restriction,
S(v) = {1, 2, 3, ...,m(v)}. In Figure 2(b), the se-
quence of values of m(v) from v = 0 to v = 7 is [3, 3, 4,
5, 5, 6, 7, 7].

From the definition of m, we get the following proper-
ties:

〈∀u, v | 1 ≤ u < v ≤ N � m(u) ≤ m(v)〉 (2)
〈∀v | 1 ≤ v < N � v < m(v)〉 (3)

m(N) = N (4)

In the next section, we describe how to use m to deter-
mine when we can execute vertices concurrently.

3.1.2. Concurrent Execution. The behavior of the func-
tion m(v) on a graph numbered according to our restric-
tions allows us to determine when a particular vertex has all
the inputs it needs to execute a particular phase p, and there-
fore to determine the set of vertices and their corresponding

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

7

5

1 3

4

6

2

S(0) = { 1, 2, 3 }

S(1) = { 1, 2, 3 }

S(2) = { 1, 2, 3, 5 }

S(3) = { 1, 2, 3, 4, 5 }

S(4) = { 1, 2, 3, 4, 5, 6 }

S(5) = { 1, 2, 3, 4, 5, 6 }

S(6) = { 1, 2, 3, 4, 5, 6, 7 }

S(7) = { 1, 2, 3, 4, 5, 6, 7 }

(a) Unsatisfactory numbering

7

4

1 3

5

6

2

S(0) = { 1, 2, 3 }

S(1) = { 1, 2, 3 }

S(2) = { 1, 2, 3, 4 }

S(3) = { 1, 2, 3, 4, 5 }

S(4) = { 1, 2, 3, 4, 5 }

S(5) = { 1, 2, 3, 4, 5, 6 }

S(6) = { 1, 2, 3, 4, 5, 6, 7 }

S(7) = { 1, 2, 3, 4, 5, 6, 7 }

(b) Satisfactory numbering

Figure 2. Two topologically sorted graphs and their corresponding S(v) values.

phases that may execute concurrently. When we say that
a vertex “executes” a phase p, we mean either that it con-
sumes inputs that are associated with phase p and performs
some computation, or that its computation for phase p is de-
termined to be unnecessary because none of its inputs have
changed for phase p.

The function m(v) is used to determine which vertices
may execute, as follows: when all vertices indexed v and
lower have finished executing phase p, all vertices indexed
m(v) and lower have sufficient information (changes, or the
absence thereof, for all inputs) to execute phase p. This is
the case because the predecessors of all vertices indexed
m(v) and lower are indexed v and lower, by definition of
m(v).

In order to determine the vertices and phases that may
execute concurrently, we consider each pair (v, p), consist-
ing of the vertex indexed v and phase p, separately. Execu-
tion of a vertex-phase pair (v, p) is the execution of phase p
by the vertex indexed v, using any inputs v has received for
phase p and using previous values for any inputs it has not
received for phase p.

A value xp for each phase p indicates how much of the
phase has been executed. We define x0 to be N , and xp

for 0 < p to be the highest index such that xp ≤ xp−1

and all vertices indexed xp and lower have finished execut-
ing phase p. The restriction xp ≤ xp−1 prevents higher-
numbered phases from “overtaking” lower-numbered ones
and violating the serializability of the outputs.

Clearly, two distinct pairs (v, p) and (v, q) must not exe-
cute concurrently, because a single vertex can only execute
one phase at a time. In addition, for p < q, (v, p) must exe-
cute before (v, q) because phases must execute in order. At
any moment, subject to the preceding two restrictions, all
pairs (v, p) such that xp < v ≤ m(xp) may execute phase

p concurrently because all their inputs are known.
We determine the set of vertex-phase pairs that may

execute concurrently as follows. Assume that vertices are
indexed 1, 2, ..., N , phases are numbered 1, 2, ..., and no
phases are skipped. Further assume that, for each phase p,
xp is the maximum index such that all vertices indexed xp

and lower have already executed (xp is 0 if phase p has not
yet started). Then the set of vertex-phase pairs that have suf-
ficient information to execute at any given time—a full set
of inputs—is given by:

full∞ = 〈∪v, p |
1 ≤ p ∧ (xp < v ≤ m(xp)) � {(v, p)}〉 (5)

Note that there are an infinite number of vertex-phase
pairs in full∞ corresponding to each source vertex, be-
cause of the way m is defined. Since full∞ contains
multiple vertex-phase pairs with the same vertex in-
dex, the set of vertex-phase pairs that may execute con-
currently given our previously-stated restrictions on con-
current execution is the subset of full∞ consisting of the
vertex-phase pairs with the minimum phase for each ver-
tex, given by:

ready∞ = 〈∪v, p | (v, p) ∈ full∞∧
〈∀q | (v, q) ∈ full∞ � p ≤ q〉 � {(v, p)}〉 (6)

The sets full∞ and ready∞ determine exactly what ver-
tices may execute concurrently given any state of the system
described by the set of xp for 1 ≤ p. However, by them-
selves they are not enough to allow us to implement a fea-
sible algorithm for concurrent execution of a computation
graph. The set definitions must be restricted in order to cre-
ate a feasible algorithm that uses them.

First, we note that full∞ encompasses all possible
phases, starting from phase 1. We can restrict this by in-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

troducing the idea of the maximum phase that has started
execution. We define pmax such that the phase num-
ber p of every phase that has started execution falls
within the range 1 ≤ p ≤ pmax. We also introduce the
Boolean msg(v,p), which is true if there is at least one mes-
sage with phase p waiting on an input of vertex v, and false
if there are no messages with phase p on inputs of ver-
tex v. A message for phase p waiting on a vertex input is
considered to remain on that input until the vertex has fin-
ished executing phase p, at which point it is consumed.
Using these new terms, new full and ready sets may be de-
fined as follows:

full = 〈∪v, p | 1 ≤ p ≤ pmax ∧ msg(v,p)∧
xp < v ≤ m(xp) � {(v, p)}〉 (7)

ready = 〈∪v, p | (v, p) ∈ full ∧
〈∀q | (v, q) ∈ full � p ≤ q〉 � {(v, p)}〉 (8)

Source vertices present a problem with this formulation, be-
cause they have no inputs and can therefore never have mes-
sages waiting on their inputs. We assume for the sake of this
formulation that every source vertex receives a phase signal
from an external source for every phase p. This phase signal
is treated as an input, allowing the source vertex to be part
of the full set. After a source vertex is executed for phase
p, it consumes the phase p signal just as a non-source ver-
tex would consume its phase p input messages.

Next, we introduce a new set, the partial set, contain-
ing all the vertex-phase pairs that have at least one new in-
put but do not have sufficient information to execute (that
is, they have a partial set of inputs). The partial set is de-
fined as follows:

partial = 〈∪v, p | 1 ≤ p ≤ pmax ∧ msg(v,p)∧
m(xp) < v � {(v, p)}〉 (9)

The partial, full, and ready sets tell us what vertex-phase
pairs need to be executed, as well as when they are eligible
for execution. We can construct an algorithm that maintains
data structures corresponding to these set definitions, the
msg values, and the values of pmax and xp. If this algorithm
executes vertex-phase pairs only when they are in the ready
set, and guarantees that every vertex-phase pair placed in
that set gets executed exactly once, then the set definitions
guarantee that the algorithm will correctly execute the com-
putation graph. Figure 3 depicts part of a correct execution
of a computation graph, showing the set memberships of the
vertex-phase pairs for two phases of the execution.

3.2. Algorithm Description

The algorithm, which can run on a shared-memory sym-
metric multiprocessor with an arbitrary number of proces-
sors, consists of computation processes (Listing 1) executed

concurrently by an arbitrary number of threads. Each pro-
cess is structured as an infinite loop; each execution of the
loop consists of taking the next unexecuted vertex-phase
pair from a run queue, executing it, and updating the data
structures accordingly.

The run queue is assumed to be a thread-safe queue: any
thread executing a dequeue operation suspends until an item
is available for dequeuing, and the dequeue operation atom-
ically removes an item from the queue such that each item
on the queue is dequeued at most once. It is also assumed
to be empty at system initialization time. A lock is used to
guarantee that each thread has exclusive access to the data
structures while updating them; we denote the lock and un-
lock operations by lock and unlock statements. We assume
that there is an additional process, called the environment
and shown in Listing 2, that also has access to these data
structures and the same lock. The environment is respon-
sible for initializing the data structures (other than the run
queue) and for starting new computational phases. In a real-
world implementation of this algorithm, the environment
process would determine when phases begin and end based
on the arrival of data from external sources such as sen-
sors; in this simple form, however, the environment merely
starts new phases repeatedly. It starts a phase p by putting
all the vertex-phase pairs (v, p), where v is a source ver-
tex, into the full set and then updating the ready set and run
queue appropriately.

In Listings 1 and 2, the lines referring to the msg val-
ues are enclosed in [] braces; this reflects the fact that the
msg values are ghost variables, used in the correctness ar-
gument (because they are part of the set definitions) but not
necessary for the correct functioning of the algorithm.

3.3. Correctness Argument

Space constraints prevent us from including a formal cor-
rectness proof of the algorithm; instead, we present an in-
formal correctness argument. The algorithm is considered
to be correct if it maintains the partial, full, and ready sets
according to definitions (7)–(9), executes concurrently only
those vertex-phase pairs that are concurrently in the ready
set, and executes every vertex-phase pair that is present in
the ready set (at any time) exactly once. If the system ful-
fills these conditions, then because of the way we have de-
fined the three sets it will generate correct results.

We must demonstrate that the algorithm correctly main-
tains the partial, full, and ready sets according to their def-
initions. These are represented in the algorithm listings as
the partial, full, and ready variables. Their definitions de-
pend on the values of pmax and msg . We must first show
that these two status variables are maintained correctly—
that is, they are consistent with their definitions—before
moving on to demonstrate the correctness of the set ma-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

5

43

21

6 5

43

21

6

(a) Phase 1 initiated

5

43

21

6 5

43

21

6

(b) (1, 1) executed, generated output

5

43

21

6 5

43

21

6

(c) Phase 2 initiated

5

43

21

6 5

43

21

6

(d) (1, 2) executed, generated no output

5

43

21

6 5

43

21

6

(e) (2, 1) executed, generated output

5

43

21

6 5

43

21

6

(f) (2, 2) executed, generated output

5

43

21

6 5

43

21

6

(g) (3, 1) executed, generated output

5

43

21

6 5

43

21

6

(h) (4, 1) executed, generated output

Figure 3. Eight steps in the execution of a computation graph. The two graphs in each subfigure rep-
resent execution phases 1 and 2, with phase 1 on the left. Vertices depicted as circles (�), diamonds
(�), octagons (�) and squares (�) are in no set, only the partial set, only the full set, and both the
full and the ready set, respectively.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Listing 1 A computation process.
1: loop
2: (v, p) := run-queue.dequeue
3: execute the computation for (v, p)
4: lock

{remove (v, p) from sets}
5: full := full \ {(v, p)}
6: ready := ready \ {(v, p)}
7: [msg(v,p) := false]
8: for all (w, p) such that v generated an output for w

during its execution of phase p do
9: partial := partial ∪ {(w, p)}

10: [msg(w,p) := true]
11: end for

{update xp to reflect the current state of the compu-
tation}

12: i := p
13: repeat
14: if 〈∃w � (w, i) ∈ (partial ∪ full)〉 then
15: xi := 〈min w | (w, i) ∈ (partial ∪ full)�w〉−

1
16: else
17: xi := N
18: end if
19: if xi > xi−1 then
20: xi := xi−1

21: end if
22: i := i + 1
23: until pmax < i

{move newly full pairs from partial set to full set}
24: newly-full := 〈∪w, q | (w, q) ∈ partial ∧ w ≤

m(xq) � {(w, q)}〉
25: partial := partial \ newly-full
26: full := full ∪ newly-full

{add newly ready pairs to ready set and run queue}
27: for all (w, q) such that (w, q) ∈ full ∧ (w, q) 	∈

ready ∧ 〈∀r | (w, r) ∈ full � q ≤ r〉 do
28: ready := ready ∪ {(w, q)}
29: run-queue.enqueue (w, q)
30: end for
31: unlock
32: end loop

nipulations. We assume that the system is started with a sin-
gle thread running the environment process and some num-
ber k of threads running computation processes. The exclu-
sive access guaranteed by the use of the lock and unlock
statements around data structure accesses makes reasoning
about the data structure manipulations straightforward.

Within the correctness argument, we refer to pro-
gram statements by concatenating their listing and state-
ment numbers with a “.”; for example, statement 6 of listing
2 is referred to as statement 2.6.

Listing 2 The environment process.
1: lock
2: partial , full , ready := ∅, ∅, ∅
3: pmax := 0
4: next := 1
5: x0 := N
6: 〈‖ i | 0 < i � xi := 0〉
7: [〈‖ i, v | 0 < i ∧ 1 ≤ v ≤ N � msg(v,next) := false〉]
8: unlock
9: loop

10: lock
{start a new phase and add its source vertex pairs to
full set}

11: pmax := next
12: for all v such that v is a source vertex do
13: full := full ∪ {(v,next)}
14: [msg(v,next) := true]
15: end for

{add newly ready pairs to ready set and run queue}
16: for all (w, q) such that (w, q) ∈ full ∧ (w, q) 	∈

ready ∧ 〈∀r | (w, r) ∈ full � q ≤ r〉 do
17: ready := ready ∪ {(w, q)}
18: run-queue.enqueue (w, q)
19: end for

{update next}
20: next := next + 1
21: unlock
22: sleep for some amount of time
23: end loop

3.3.1. Status Variables. The initialization statements for
the environment—statements 2.2–2.7—are guaranteed to
execute before any manipulation of variables by the com-
putation processes. This is the case because the run queue
is initially empty, and therefore each computation process
must suspend on statement 1.2 waiting to dequeue a vertex-
phase pair. We examine pmax first, then msg .

The pmax value is modified only by the environment pro-
cess. Initially, pmax is set to 0 (statement 2.3). This is con-
sistent with its definition, since no phases have started exe-
cution. The only statement that changes pmax is statement
2.11, the second statement of the environment process loop,
which sets it to be equal to next. By inspection, the envi-
ronment process loop is also the only part of the system
that is capable of inserting, into any of the three sets, a
vertex-phase pair having a phase number that was not al-
ready present in one of the sets; it repeatedly starts a phase
numbered next and increments next. Since next is initially
1, giving pmax the value of the phase that is about to be
started each time through the loop ensures that all phases
that have started execution fall within the phase number
range 1 ≤ p ≤ pmax. Therefore, pmax is consistent with
its definition.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

The msg values are manipulated by both the environ-
ment process and the computation processes. They are ini-
tialized for a phase p when phase p is started in the en-
vironment process loop; it is clear by inspection that no
vertex-phase pair with phase p can be executed by a com-
putation thread without phase p having been started by the
environment process, and computation threads modify only
msg values for the phases they are currently computing. Ini-
tially, all msg(v,p) are set to false (statement 2.7), and then
the msg(s,p) for all source vertices s are set to true (state-
ment 2.14). This is consistent with the definition of msg be-
cause, as discussed previously, we consider sources starting
a new phase to have an incoming message on a “phase sig-
nal” channel.

When a computation thread finishes computation for a
vertex-phase pair (v, p), it sets msg(v,p) to false (statement
1.7), and sets msg(w,p) to true for all w such that v gen-
erated an output for w (statement 1.10). These statements
keep the msg values consistent with their definition, as fol-
lows. Once the computation for (v, p) is complete, the in-
puts for v with phase p are considered consumed (and there-
fore msg(v,p) must be false), while the generation of new
messages for w with phase p means that msg(w,p) must be
true.

3.3.2. x. The xp values must be shown to be accurately
maintained in order to demonstrate the correctness of the
set manipulations. For each phase p, xp is initialized to 0 by
the environment process (statement 2.6); as no vertex-phase
pairs with phase p can have executed by the time this initial-
ization occurs, this is consistent with the definition of xp.
The only time xp is subsequently changed for a phase p is
after a vertex-phase pair with phase p or lower finishes exe-
cution (statements 1.12–1.23).

When each phase is examined, there are two possible
cases. Either there are still other vertex-phase pairs with
phase p in the partial or full set, or there are not. If there
are not, then phase p is complete, because no more mes-
sages can be sent with phase p if no more vertex-phase pairs
with phase p execute, so xp is set to N (statement 1.17). If
there are, then statement 1.15 sets xp to 〈min w | (w, p) ∈
(partial∪full)�w〉−1 (in the interest of brevity, we refer to
this quantity as vmin). In either case, the value is checked to
ensure that it does not exceed xp−1 (statements 1.19–1.21).
This update of xp is consistent with the definition, for the
following reason: messages can only be sent from vertices
with lower indices to vertices with higher indices, and only
vertices that are already in the sets or that subsequently re-
ceive messages can be executed. Therefore, at the time xp

is set to vmin, any vertex indexed vmin or lower must have
either already executed, or must not need to execute (be-
cause its inputs have not changed), for phase p, while ver-
tices numbered higher than vmin are either still executing
or have not yet executed. This shows that setting xp to vmin

is consistent with the definition of xp as the highest index
such that all outputs from all vertices indexed xp or lower
for phase p are known.

3.3.3. Set Manipulations. Now that xp, pmax, and msg
have been shown to be consistent with their definitions, the
set manipulations can be examined. We examine first the set
manipulations by the environment process, then the set ma-
nipulations by the computation processes.

When the environment process starts, it initializes all the
sets in a way such that their definitions are satisfied (state-
ments 2.2–2.3): all the sets are empty, and the range from 1
to pmax is an empty range. Assume that the sets are consis-
tent with their definitions when the lock is acquired at the
beginning of each loop iteration (after statement 2.9). State-
ment 2.11 sets pmax to next. After statement 2.11 the set
contents have not changed, but they are still consistent with
their definitions because there are no vertices (v, pmax)
such that msg(v,pmax) holds. Statements 2.12–2.14 insert
(v,next) for all source vertices v into the full set and set
msg(v,next) to true for those vertices; this makes the full
set consistent with its definition, because m(0) is the in-
dex of the highest-numbered source vertex. Finally, state-
ments 2.17–2.18 are executed once for each vertex-phase
pair (v, p), such that p is the minimum phase in the full
set for vertex v, that is in the full set but not in the ready
set. This makes the ready set consistent with its definition.
No further set manipulations take place in the environment
process loop, so at the unlock statement (2.21), the invari-
ant that the sets remain consistent with their definitions has
been preserved.

Next, assume that the sets are consistent with their defi-
nitions when a computation process acquires the lock (state-
ment 1.4). Upon acquiring the lock, it has completed the ex-
ecution of (v, p); by removing (v, p) from the full and ready
sets and setting msg(v,p) to false (statements 1.5–1.7), the
full and ready sets are kept consistent with their definitions.
Next, every (w, p) such that v generated an output for w
while executing phase p is added to the partial set and has
msg(w,p) set to true (statements 1.8–1.11). This keeps the
partial set consistent with its definition at this point in the
execution, because xp has not yet changed. Next, xp and
the xi values for subsequent phases are updated (statements
1.12–1.23). Statements 1.24–1.26 then move any vertices
that are within the appropriate range from the partial set to
the full set, keeping those sets consistent with their defini-
tions given the new value of xp. Finally, statements 1.28–
1.29 are executed once for each vertex-phase pair (v, p)
contained in the full set but not in the ready set such that p is
the minimum phase in the full set for vertex v. This makes
the ready set consistent with its definition. No further set
manipulations take place in the computation process loop,
so at the unlock statement (1.31), the invariant that the sets
remain consistent with their definitions has been preserved.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

3.3.4. Run Queue. All that remains to demonstrate the
correctness of the algorithm is to show that each vertex-
phase pair placed in the ready set is executed exactly once.
First, note that vertex-phase pairs may move through the
sets in a very limited number of ways. Either they are placed
directly into the full set (by statement 2.13), or they are ini-
tially placed in the partial set (by statement 1.9). They can
then be moved from the partial set to the full set (by state-
ments 1.24–1.26), placed into the ready set exactly once (by
statement 1.28 or statement 2.17), or removed from both the
full and ready sets (by statements 1.5–1.6). The key obser-
vation is that it is impossible for a vertex-phase pair to be
put into the ready set twice. Given that observation, the def-
inition of the queue data structure, and the fact that each
vertex-phase pair is enqueued once at the time it is placed
in the ready set (by statement 1.28 or statement 2.17), it is
clear that each vertex-phase pair is executed exactly once.
Therefore, any execution of the graph using this algorithm
generates correct results.

4. Implementation and Measurements

We have developed a prototype implementation of the al-
gorithm described in Section 3 using Java 1.5. We chose
Java 1.5 over earlier versions of the Java platform be-
cause of its robust concurrency support and its generic
typing constructs, both of which significantly reduced
the work required to develop the prototype. In particu-
lar, we made use of the java.util.concurrency
classes Lock, Condition, BlockingQueue and
ThreadPoolExecutor to implement the concur-
rency control for manipulation of the variables, the run
queue, and the pool of computation threads. In addi-
tion to the pool of computation threads, there is always an
additional thread that runs the implementation’s equiva-
lent to the environment process; thus, there are always at
least two threads contending for exclusive access to the
data structures.

The prototype implementation takes as input an XML
specification file for a computation, which includes a speci-
fication of the computation graph with vertices as instances
of Java classes conforming to well-defined guidelines. The
specification file also contains simulation parameters, such
as the number of timesteps to run and random seeds to use
for the generation of random values by source vertices. The
implementation makes use of several optimizations and cus-
tom data structures to make the operations described in List-
ings 1 and 2 efficient.

We have so far been able to perform only limited per-
formance testing of our prototype implementation. On a
dual-processor machine running Solaris, we have found that
identical computations see a speedup of approximately 50%
when two computation threads are running, compared to the

speed when a single computation thread is running. As men-
tioned previously, there is always a thread running for the
environment process; thus, the 50% speedup is a reason-
able result (because the number of threads contending for
the data structures is increased from 2 to 3). We have not
yet been able to test on machines with more than two pro-
cessors; however, we predict that as long as the computa-
tions performed by the vertices take significantly more time
than the computations performed to maintain the data struc-
tures, the speedup will be close to linear in the number of
processors when we use a thread pool containing one com-
putation thread for each processor.

5. Related Work

A great deal of work has been carried out on dataflow
networks since the 1970s, with Kahn-McQueen networks
[12] and subsequent research by Dennis [9] and by Arvind
and Culler [1] among others. The model of computation we
use is a variant on dataflow that is called ∆-dataflow [13].
Both dataflow and ∆-dataflow networks are represented as
directed graphs in which vertices represent computations
and edges represent message-passing channels. A computa-
tion in a dataflow graph executes when messages are present
on each of its input channels. By contrast, in our model, a
computation is executed when all the information required
for the computation is available, even though some infor-
mation may be conveyed by the absence of messages. This
is the key difference between our work and earlier work on
parallel computations using dataflow graph models.

Serializability has been studied in the context of
databases for decades [15]. Our problem is also to de-
velop concurrent algorithms that are serializable—they
have the same effect as executing one phase at a time.
The way we achieve serializability is very different from
the way it is achieved in databases. We don’t use start
and end transaction primitives, and we don’t use roll-
backs.

An immense amount of work has been carried out on al-
gorithms for multithreaded systems. Earlier work has not,
however, considered serializable ∆-dataflow networks.

A recent overview of work on sensor networks is pro-
vided by Culler [8]. Algorithms for data fusion directly
within networks of sensor nodes—as opposed to within data
fusion engines—have been studied extensively [4]. Some of
these algorithms also use the insight upon which the algo-
rithm discussed in this paper is based: the absence of mes-
sages can encode valuable information.

Data stream management systems (DSMS) also deal
with the problem space studied in this paper, continuous de-
tection of predicates on data streams [2, 3, 5, 6, 7]; their
primary focus is on extending database management sys-
tems and SQL to deal with events. Event servers [11] deal

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

with the same problem as well; their focus is on extending
object-oriented approaches, rather than relational database
approaches, to deal with events. The algorithms described
in this paper can be employed in DSMS and event server
systems that run on multithreaded architectures.

Distributed simulation algorithms [14] predict the future,
up to some point called the “look-ahead time”, by using
models. The idea of prediction using models and proofs em-
ployed in our system is essentially the same as that used in
distributed simulation. Kinetic data structures (KDS) [10]
detect conditions on moving objects. KDS also predict the
future, up to some point, by using properties of mobile ob-
jects. This idea in KDS is similar to the idea in distributed
simulation and in our algorithm. Most of the work on KDS
does not deal with execution on multiprocessor machines.

6. Future Work

The algorithm we have presented only uses a single
shared-memory multiprocessor to perform data fusion. We
are investigating various ways of using networks of multi-
processor machines to improve performance and efficiency,
including methods for partitioning the computation graph
across multiple machines and replication of event streams
to multiple distinct computation graphs.

In constructing our algorithm, we have assumed that
timestamps are perfect and that there are no transmission
delays between sensors and the data fusion engine. This al-
lows us to treat all messages that arrive at the fusion en-
gine at time t as a snapshot of the environment at t. In real-
ity, clocks in sensors are noisy and message delays may be
significant and random. The fusion engine must wait long
enough after time t to ensure that sensor data taken at time
t arrives with high probability. Incorporating more accurate
notions of concurrency and the passage of time are neces-
sary for analyzing error: the probability of false positives
(claiming that conditions occur when they don’t) and false
negatives (not detecting conditions that do occur).

7. Summary

In this paper, we have described a multithreaded algo-
rithm for correlating event streams. The algorithm is a se-
rializable version of ∆-dataflow. The results of preliminary
experiments with an implementation in Java 1.5 are promis-
ing, and we intend to conduct experiments with larger sym-
metric multiprocessors. The algorithms given here are use-
ful for applications with large volumes of asynchronous
events, such as crisis management dealing with natural or
man-made disasters.

Acknowledgements

The research described in this paper has been supported
in part by the National Science Foundation under grant
CCR-0312778, ITR: Information Infrastructures for Crisis
Management.

References

[1] Arvind and D. Culler. Dataflow architectures. LCS Tech-
nical Memo MIT/LCS/TM-294, Massachusetts Institute of
Technology, Feb. 1996.

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously adap-
tive query processing. In 2000 ACM SIGMOD International
Conference on Management of Data, May 2000.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, June 2002.

[4] A. Boulis, S. Ganeriwal, and M. B. Srivastava. Aggregation
in sensor networks: An energy-accuracy trade-off. In First
IEEE International Workshop on Sensor Network Protocols
and Applications (SNPA), May 2003.

[5] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik.
Monitoring streams - a new class of data management ap-
plications. In 28th International Conference on Very Large
Data Bases (VLDB), Aug. 2002.

[6] D. Carney, U. Çetintemel, A. Rasin, S. B. Zdonik, M. Cher-
niack, and M. Stonebraker. Operator scheduling in a data
stream manager. In 29th International Conference on Very
Large Data Bases (VLDB), Sept. 2003.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ:
Continuous dataflow processing for an uncertain world. In
First Biennial Conference on Innovative Data Systems Re-
search (CIDR), Jan. 2003.

[8] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor
networks. IEEE Computer, 37:41–49, Aug. 2004.

[9] J. Dennis. Dataflow supercomputers. IEEE Computer,
13(11):48–56, Nov. 1980.

[10] L. J. Guibas. Kinetic data structures: A state of the art re-
port. In Third International Workshop on Algorithmic Foun-
dations of Robotics, Aug. 1998.

[11] iSpheres Corporation. iSpheres Halo event server. http:
//www.ispheres.com/.

[12] G. Kahn. The semantics of a simple language for parallel
programming. In IFIP Congress 74, Aug. 1974.

[13] R. Manohar and K. M. Chandy. ∆-Dataflow networks for
event stream processing. In IASTED International Confer-
ence on Parallel and Distributed Computing and Systems,
Nov. 2004.

[14] J. Misra. Distributed discrete event simulation. ACM Com-
puting Surveys, 18(1):39–65, Mar. 1986.

[15] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database
System Concepts. McGraw-Hill, 2001.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

