Snapshot Processing in Streaming Environments

Daniel M. Zimmerman and K. Mani Chandy

Department of Computer Science, California Institute of Technology
Mail Stop 256-80, Pasadena, California 91125, U.S.A.
{dmz, mani}@cs.caltech.edu

I. INTRODUCTION

Computational issues related to streaming data, and in par-
ticular the monitoring and rapid correlation of multiple sources
of streaming data, are becoming increasingly important in
contexts ranging from business processes to crisis detection.
Applications include automated commodities trading (streams
of stock and commodity ticker data), medical monitoring
(streams of medical information from instruments worn by
or in the vicinity of patients), and the detection of security
threats such as biological and chemical weapons (streams of
readings from radiation and biohazard detectors, intelligence
services, immigration checkpoints, and more). For example, a
government system to detect bioterror attacks must correlate
multiple streams of possibly low-confidence data from sensors
and local and national public health information networks
with cues from indicators such as news and government
sources indicating geographical locations, tactics and timing
of possible attacks. The results of this correlation trigger
appropriate responses, such as flagging information for more
in-depth analysis or sending alerts to public health officials.

Monitoring and correlation applications of this type are ideal
for deployment on distributed computing grids, because they
have high transaction throughput, require low latency, and can
be partitioned into sets of small communicating computations
with regular communication patterns. An important consider-
ation in these applications is the need to ensure that, at any
given time, computations are carried out on an accurate—
or at least close to accurate—picture of the environment
being monitored. One way of doing this, which we call
snapshot processing, is to treat collections of events that
occur at approximately the same time as representing a global
snapshot—a valid state—of the environment. Computation on
the resulting series of snapshots is much like computation
on a real-time video of the entire environment. We briefly
describe our model for these stream processing computations
and introduce the concept of snapshot processing.

II. GRAPH MODEL OF STREAM PROCESSING

In a given stream processing system, there may be many
data sources. The data can be unstructured (as in news stories
or images), structured (as from databases or Web Services,
where data schemas are well defined), or partially structured.
The computation can be represented by a directed acyclic
graph in which the nodes represent computational elements
and the directed edges represent data flowing between ele-
ments. For example, a node may represent the evaluation of

1-4244-0344-8/06/$20.00 © 2006 IEEE

319

natural language text messages to determine their relevance
to a particular situation. A node may also represent an incre-
mental statistical analysis such as a regression or a change-
detection algorithm, or even a simple Boolean operation such
as conjunction. Some nodes may execute multiple models to
determine which one best explains the current data. Thus,
the granularity of nodes varies widely. The sources (nodes
without predecessors) of the graph represent data sources,
such as cameras and sensors, and the sinks (nodes without
successors) represent responses, such as email alerts and
emergency shutdowns.

Information from multiple streams is correlated as data
arrives. The state of any given sensor or information source
changes relatively slowly; at each instant in time the global
state may be exactly the same as, or differ only slightly from,
the state at the previous instant. Therefore, efficient algorithms
communicate and compute incrementally based on the changes
between consecutive states.

Data may be noisy. There may be a delay between the
instant at which a measurement is made by a sensor and
the instant at which a message containing that measurement
data arrives at the correlation engine. Therefore errors—false
positives where a response is generated when none should
be, and false negatives where no response is generated, or a
response is generated later than it should be—are possible.
The challenge is to design systems that have tolerable error
rates, process streams of data from all the data sources at the
rates at which they are generated, and have adequate response
times.

III. SNAPSHOT PROCESSING

Assume that the stream processing system is a distributed
system—either deployed on a grid or “emulated” within
a single shared-memory machine—having exactly the same
structure as the computation graph: one processor (or process)
for each node, and a message channel between nodes for
each directed edge. There are other possible stream processing
system architectures, but we focus on this one at present.

A typical method of processing streams is on-arrival pro-
cessing: each process remains idle until one of its input
channels becomes non-empty, at which point it executes a
step by removing a message from one of its input channels
and carrying out the incremental computation associated with
that message. This execution may result in the generation of
messages to other processes.

Grid Computing Conference 2006

Snapshot processing, by contrast, attempts to perform com-
putations on one consistent global state at a time. Each
message generated by a data source is assigned a timestamp
(we assume lightweight clock synchronization among the pro-
cesses, and therefore bounded clock drift). Time is partitioned
into a sequence of contiguous intervals of length D; all
messages with timestamps in the interval [k x D, (k+1) x D)
(called computation phase, or simply phase, k), are treated as
though they reflect the kth global state, and are processed as
an atomic unit. If multiple messages on the same channel have
timestamps in phase k, all but the last are discarded.

The choice of D depends on the rates of change of sensor
values. A D that is too large may encompass several changes
in the measurements made by one sensor; since only the last
of these measurements will be used to represent the entire
interval, this can result in less accurate estimates of global
states. A D that is too small may result in large numbers of
process activations and a consequent performance penalty.

Consider two extreme cases of computation graphs to gain
intuition into the relative performances of on-arrival and
snapshot processing algorithms. The first consists of a set of
nodes with at most one input edge (no fan-in); it is a forest
of independent subgraphs (trees), where the root of each tree
is a source node and the leaves of the tree are sink nodes.
Since different trees do not share nodes, this represents a
computation in which each stream is analyzed independently.
The second consists of a set of S source nodes followed by
K layers, where each layer has M nodes and each node in
a layer has incoming edges from all nodes in the previous
layer (significant fan-in). The M nodes in each layer and M?
edges between each pair of layers give the graph a total of
(K —1) x M?+ S x M edges. This represents a computation
in which there is substantial correlation across streams.

Each message arriving at each node may result in that node
sending a message on each of its outgoing edges. Consider the
steps taken when processing a message at a source node of
each of the two graphs. In the first graph, a message arriving
at a source node (the root of a tree) may cause messages to
be propagated along its outgoing edges; thus the number of
node activations is the number of nodes in the tree, for both on-
arrival and snapshot processing. In the second graph, however,
a message arriving at a source node is sent to M nodes in
the first layer. With on-arrival processing, each of these M
messages can cause messages to be sent to all M nodes
in the second layer, for a total of M 2 additional messages,
and the progression continues. Thus, a total of EngMj
((ME+1 —1)/(M —1)) messages could be generated by each
message arriving from a data source, and each could cause
a node activation; for a small graph with K = M = 5, this
is 3,906 messages and 3,906 node activations. With snapshot
processing, on the other hand, each message channel is used at
most once per phase and each node is activated at most once
per phase. Thus the number of node activations is at most
K x M, and the generated number of messages is at most
(K — 1) x M?; for K = M = b5, this is 100 messages and
25 node activations. Clearly, for this type of graph, snapshot

processing requires far less computation and communication.

Errors in the system can arise in two ways: (1) they can
be caused by the signaling and data fusion algorithms; and
(2) they can be caused by the underlying architecture (sen-
sor errors, timestamp drift, message delays between sensors
and computation elements). Neither on-arrival nor snapshot
processing deals with the second type of error, but the al-
gorithms differ in the way they deal with the first. With
on-arrival processing, a node may carry out a computation
on a message with a later timestamp before it carries out a
computation on a message with an earlier timestamp, because
messages are propagated along the edges of the graph as
they are computed and some paths may execute faster than
others. This may cause the computation to use out-of-date
or incorrect information. Snapshot processing eliminates this
out-of-order execution problem by forcing the computations
to remain in phase; however, errors may be introduced by
treating all measurements within a phase as having occurred
simultaneously. The frequency and severity of these errors are
dependent on the choice of phase interval D.

The performance benefits of snapshot processing and the
fact that it is not susceptible to out-of-order execution errors
are good reasons to prefer it over on-arrival processing for
streaming data correlation. However, the in-order execution
and noninterfering computations of snapshots do not come
for free; like the set of ACID properties for database trans-
actions, snapshot processing requires specialized scheduling
algorithms. Note that “scheduling” in this context does not
refer to the assignment of tasks to resources in a distributed
computing grid, also known as resource allocation, which has
been studied extensively; instead, it refers to the scheduling
of individual operations within a larger computation to enable
concurrency while preserving data dependencies. We have de-
veloped multiple scheduling algorithms for snapshot process-
ing. These include null-message scheduling, which uses ideas
from distributed simulation [1]; m-threshold scheduling, which
is described in a previous paper [2]; and layer scheduling,
which will be described in a forthcoming paper. The latter
two are based on the idea of a A-dataflow [3] graph, in which
nodes send messages to their successors in the graph only
when their computations generate information that does not
conform to models shared with those successors.

ACKNOWLEDGEMENTS

The research described here has been supported in part by
the National Science Foundation under grant CCR-0312778,
ITR: Information Infrastructures for Crisis Management, and
by the Lee Center for Advanced Networking at Caltech.

REFERENCES

[1] J. Misra, “Distributed discrete event simulation,” ACM Computing Sur-
veys, vol. 18, no. 1, pp. 39-65, Mar. 1986.

[2] D. M. Zimmerman and K. M. Chandy, “A parallel algorithm for cor-
relating event streams,” in /9th International Parallel & Distributed
Programming Symposium (IPDPS 2005), Apr. 2005.

[3] R. Manohar and K. M. Chandy, “A-Dataflow networks for event stream
processing,” in IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, Nov. 2004.

320

