
Snapshot Processing in Stre
Daniel M. Zimmerman and K

Department of Computer Science, Californ
Mail Stop 256-80, Pasadena, Califo

{dmz, mani}@cs.calte

I. INTRODUCTION

Computational issues related to streaming data, and in par-
ticular the monitoring and rapid correlation of multiple sources
of streaming data, are becoming increasingly important in
contexts ranging from business processes to crisis detection.
Applications include automated commodities trading (streams
of stock and commodity ticker data), medical monitoring
(streams of medical information from instruments worn by
or in the vicinity of patients), and the detection of security
threats such as biological and chemical weapons (streams of
readings from radiation and biohazard detectors, intelligence
services, immigration checkpoints, and more). For example, a
government system to detect bioterror attacks must correlate
multiple streams of possibly low-confidence data from sensors
and local and national public health information networks
with cues from indicators such as news and government
sources indicating geographical locations, tactics and timing
of possible attacks. The results of this correlation trigger
appropriate responses, such as flagging information for more
in-depth analysis or sending alerts to public health officials.

Monitoring and correlation applications of this type are ideal
for deployment on distributed computing grids, because they
have high transaction throughput, require low latency, and can
be partitioned into sets of small communicating computations
with regular communication patterns. An important consider-
ation in these applications is the need to ensure that, at any
given time, computations are carried out on an accurate—
or at least close to accurate—picture of the environment
being monitored. One way of doing this, which we call
snapshot processing, is to treat collections of events that
occur at approximately the same time as representing a global
snapshot—a valid state—of the environment. Computation on
the resulting series of snapshots is much like computation
on a real-time video of the entire environment. We briefly
describe our model for these stream processing computations
and introduce the concept of snapshot processing.

II. GRAPH MODEL OF STREAM PROCESSING

In a given stream processing system, there may be many
data sources. The data can be unstructured (as in news stories
or images), structured (as from databases or Web Services,
where data schemas are well defined), or partially structured.
The computation can be represented by a directed acyclic
graph in which the nodes represent computational elements
and the directed edges represent data flowing between ele-
ments. For example, a node may represent the evaluation of

natural
to a pa
mental
detectio
as conj
determ
the gra
withou
such a
success
emerge

Infor
arrives.
change
state m
the stat
commu
betwee

Data
instant
the ins
data ar
positive
be, and
respons
The ch
rates, p
rates at
times.

Assu
system
a singl
structu
for eac
each di
system

A ty
cessing
channe
step by
and car
that me
messag

3191-4244-0344-8/06/$20.00  2006 IEEE
aming Environments
. Mani Chandy

ia Institute of Technology
rnia 91125, U.S.A.
ch.edu

language text messages to determine their relevance
rticular situation. A node may also represent an incre-
statistical analysis such as a regression or a change-
n algorithm, or even a simple Boolean operation such
unction. Some nodes may execute multiple models to
ine which one best explains the current data. Thus,
nularity of nodes varies widely. The sources (nodes
t predecessors) of the graph represent data sources,
s cameras and sensors, and the sinks (nodes without
ors) represent responses, such as email alerts and
ncy shutdowns.
mation from multiple streams is correlated as data
The state of any given sensor or information source

s relatively slowly; at each instant in time the global
ay be exactly the same as, or differ only slightly from,
e at the previous instant. Therefore, efficient algorithms
nicate and compute incrementally based on the changes
n consecutive states.

may be noisy. There may be a delay between the
at which a measurement is made by a sensor and

tant at which a message containing that measurement
rives at the correlation engine. Therefore errors—false
s where a response is generated when none should
false negatives where no response is generated, or a

e is generated later than it should be—are possible.
allenge is to design systems that have tolerable error
rocess streams of data from all the data sources at the
which they are generated, and have adequate response

III. SNAPSHOT PROCESSING

me that the stream processing system is a distributed
—either deployed on a grid or “emulated” within
e shared-memory machine—having exactly the same
re as the computation graph: one processor (or process)
h node, and a message channel between nodes for
rected edge. There are other possible stream processing
architectures, but we focus on this one at present.
pical method of processing streams is on-arrival pro-
: each process remains idle until one of its input
ls becomes non-empty, at which point it executes a

removing a message from one of its input channels
rying out the incremental computation associated with
ssage. This execution may result in the generation of
es to other processes.

Grid Computing Conference 2006

Snapshot processing, by contrast, attempts to perform com-
putations on one consistent global state at a time. Each
message generated by a data source is assigned a timestamp
(we assume lightweight clock synchronization among the pro-
cesses, and therefore bounded clock drift). Time is partitioned
into a sequence of contiguous intervals of length D; all
messages with timestamps in the interval [k×D, (k+1)×D)
(called computation phase, or simply phase, k), are treated as
though they reflect the kth global state, and are processed as
an atomic unit. If multiple messages on the same channel have
timestamps in phase k, all but the last are discarded.

The choice of D depends on the rates of change of sensor
values. A D that is too large may encompass several changes
in the measurements made by one sensor; since only the last
of these measurements will be used to represent the entire
interval, this can result in less accurate estimates of global
states. A D that is too small may result in large numbers of
process activations and a consequent performance penalty.

Consider two extreme cases of computation graphs to gain
intuition into the relative performances of on-arrival and
snapshot processing algorithms. The first consists of a set of
nodes with at most one input edge (no fan-in); it is a forest
of independent subgraphs (trees), where the root of each tree
is a source node and the leaves of the tree are sink nodes.
Since different trees do not share nodes, this represents a
computation in which each stream is analyzed independently.
The second consists of a set of S source nodes followed by
K layers, where each layer has M nodes and each node in
a layer has incoming edges from all nodes in the previous
layer (significant fan-in). The M nodes in each layer and M2

edges between each pair of layers give the graph a total of
(K − 1)×M2 +S ×M edges. This represents a computation
in which there is substantial correlation across streams.

Each message arriving at each node may result in that node
sending a message on each of its outgoing edges. Consider the
steps taken when processing a message at a source node of
each of the two graphs. In the first graph, a message arriving
at a source node (the root of a tree) may cause messages to
be propagated along its outgoing edges; thus the number of
node activations is the number of nodes in the tree, for both on-
arrival and snapshot processing. In the second graph, however,
a message arriving at a source node is sent to M nodes in
the first layer. With on-arrival processing, each of these M
messages can cause messages to be sent to all M nodes
in the second layer, for a total of M2 additional messages,
and the progression continues. Thus, a total of Σj=K

j=0 M j

((MK+1−1)/(M −1)) messages could be generated by each
message arriving from a data source, and each could cause
a node activation; for a small graph with K = M = 5, this
is 3,906 messages and 3,906 node activations. With snapshot
processing, on the other hand, each message channel is used at
most once per phase and each node is activated at most once
per phase. Thus the number of node activations is at most
K × M , and the generated number of messages is at most
(K − 1) × M2; for K = M = 5, this is 100 messages and
25 node activations. Clearly, for this type of graph, snapshot

process
Erro

be cau
(2) the
sor err
and co
process
gorithm
on-arri
on a m
compu
messag
they ar
others.
or inco
out-of-
to rem
treating
simulta
depend

The
fact tha
are goo
streami
and no
for fre
actions
algorith
refer to
compu
been s
of indiv
concur
veloped
ing. Th
from d
is desc
which
two are
nodes
when t
conform

The
the Na
ITR: In
by the

[1] J. M
veys

[2] D. M
relat
Prog

[3] R. M
proc
tribu

320
ing requires far less computation and communication.
rs in the system can arise in two ways: (1) they can
sed by the signaling and data fusion algorithms; and
y can be caused by the underlying architecture (sen-
ors, timestamp drift, message delays between sensors
mputation elements). Neither on-arrival nor snapshot
ing deals with the second type of error, but the al-
s differ in the way they deal with the first. With

val processing, a node may carry out a computation
essage with a later timestamp before it carries out a

tation on a message with an earlier timestamp, because
es are propagated along the edges of the graph as
e computed and some paths may execute faster than
This may cause the computation to use out-of-date

rrect information. Snapshot processing eliminates this
order execution problem by forcing the computations
ain in phase; however, errors may be introduced by

all measurements within a phase as having occurred
neously. The frequency and severity of these errors are
ent on the choice of phase interval D.
performance benefits of snapshot processing and the
t it is not susceptible to out-of-order execution errors
d reasons to prefer it over on-arrival processing for
ng data correlation. However, the in-order execution
ninterfering computations of snapshots do not come
e; like the set of ACID properties for database trans-
, snapshot processing requires specialized scheduling
ms. Note that “scheduling” in this context does not
the assignment of tasks to resources in a distributed

ting grid, also known as resource allocation, which has
tudied extensively; instead, it refers to the scheduling
idual operations within a larger computation to enable

rency while preserving data dependencies. We have de-
multiple scheduling algorithms for snapshot process-

ese include null-message scheduling, which uses ideas
istributed simulation [1]; m-threshold scheduling, which
ribed in a previous paper [2]; and layer scheduling,
will be described in a forthcoming paper. The latter
based on the idea of a Δ-dataflow [3] graph, in which

send messages to their successors in the graph only
heir computations generate information that does not

to models shared with those successors.

ACKNOWLEDGEMENTS

research described here has been supported in part by
tional Science Foundation under grant CCR-0312778,
formation Infrastructures for Crisis Management, and
Lee Center for Advanced Networking at Caltech.

REFERENCES

isra, “Distributed discrete event simulation,” ACM Computing Sur-
, vol. 18, no. 1, pp. 39–65, Mar. 1986.

. Zimmerman and K. M. Chandy, “A parallel algorithm for cor-
ing event streams,” in 19th International Parallel & Distributed
ramming Symposium (IPDPS 2005), Apr. 2005.
anohar and K. M. Chandy, “Δ-Dataflow networks for event stream

essing,” in IASTED International Conference on Parallel and Dis-
ted Computing and Systems, Nov. 2004.

