
Constructing Client-Server Multi-Player
Asynchronous Networked Games Using a

Single-Computer Model∗

Daniel M. Zimmerman, Brian Rothstein,
Yevgeniy Kaganovich and Khai Pham

Computer Science 256-80
California Institute of Technology

Pasadena, California 91125
{dmz, brianr, ymk, khai}@cs.caltech.edu

1 August 1997

Abstract
We examine the process of creating asynchronous networked games

by applying systematic transformations to their single-computer ana-
logues, identify the need for such transformations, and propose a sim-
ple system of rules for them. In developing these rules, our primary
concerns are comparing the flow of events in single-processor and net-
worked games and examining the restrictions and limitations resulting
from speed considerations. Although this paper only discusses games,
the transformation rules may apply to any networked application with
asynchronous data input and exchange.

Keywords: asynchronous message passing, networked multi-player games, distributed
systems, client-server model, Java

∗This work was supported under the Caltech Infospheres Project. The Caltech Info-
spheres Project is sponsored by the Air Force Office of Scientific Research under grant
AFOSR F49620-94-1-0244, by the CISE directorate of the National Science Foundation
under Problem Solving Environments grant CCR-9527130, by the NSF Center for Re-
search on Parallel Computation under Cooperative Agreement Number CCR-9120008,
and by Novell, Inc. and Parasoft Corporation.

1



1 Introduction

Asynchronous networked game programming is a new and exciting applica-
tion of the Internet. While networked games are more interesting in terms of
both gameplay and programming than their single-computer counterparts,
they present many design complications [1]. These include fairness and syn-
chronization, which are unique to networked games, and game speed, which
ascends to a new level of complexity as a result of message passing and net-
work speeds.

In response to the increasing demand for simplifying the construction of
networked games, a few models have been proposed to deal with the problems
of distributed programming and asynchronous message passing [3, 5]. Our
model centers around a transformation from a multi-player, single-computer
version of the game, in an attempt to provide an easier transition to the
realm of networked games.

Single-computer multi-player games have two advantages over networked
games: first, all players see the same display in a single-computer game, so
everyone gets every piece of game information simultaneously; second, com-
peting inputs are always processed in the correct order in a single-computer
game because there is only one computer to arbitrate among the inputs.

The method we present in this paper makes it possible for networked
games to have these properties too. In our model, a central server receives
all event data from each player on the network, arranges the events in their
proper order, and then broadcasts them to the players using a messaging
protocol which preserves message ordering. The events received by the clients
are then in the correct order, and can be processed just as in the single
computer version.

The transformation rules presented are a set of clear and simple guidelines
which help the programmer to correctly identify and handle the issues listed
above. At the same time, they are flexible enough to be applied to most
games. To test the viability of the proposed transformation rules, we have
successfully applied them to three different networked games, which will later
serve as examples of how our transformations apply to games with widely
varying communication and gameplay requirements.

We begin by introducing some concepts and definitions which are used
frequently throughout this paper. Next, we discuss the considerations which
must be dealt with in designing networked asynchronous games, present our
transformation rules in detail, and describe the successful application of these

2



rules to three different games. Finally, we compare our method to others
which have been proposed, and present our conclusions.

2 Concepts and Definitions

In order to devise a set of transformation rules for multi-player games, we
make use of several conceptual and programmatic constructs. In this section,
we describe these constructs and their functions.

2.1 PlayerTable

In a single-computer game, all players’ states are controlled by the single
computer. The programmer need not concern herself with consistency of
states, because there are no unanticipated state changes being made. In a
networked game, however, states may be changed simultaneously on many
different computers. We use a construct called the PlayerTable to ensure
consistency of states in a networked game. In addition to state information
for each player, a PlayerTable contains contact information which allows this
state information to be communicated between players and the central server.
The server keeps the main PlayerTable for the game – when a single client
makes a change to its copy of the PlayerTable, this change is sent to the
server, which broadcasts it to the remaining players.

An entire PlayerTable can be sent over the network as a single message,
which allows players who join the game late to be easily “brought up to
speed” with respect to players already in the game.

2.2 Net Event

Asynchronous games, like many other applications, are event-driven – the
gameplay results from players’ actions. In a single-computer game, an event
is synonymous with a change in the state of one of the players. A net event
is the extension of this concept to a networked game, where a change in one
player’s state must be communicated to the other players on the network. Net
events generated by a player are communicated using the contact information
in that player’s PlayerTable. A net event which modifies the game state is
called a shared event.

3



2.3 Net Event Handler

A net event handler is a process that listens for net events and converts them
into local events to be processed by the player’s machine. If a language with
thread support, such as Java, is used for programming, multiple net event
handlers in separate threads can listen for incoming net event transmissions,
which can improve communications efficiency.

2.4 Dispatcher

A dispatcher is a specific type of net event handler which listens for net
events containing requests to join or leave the game. It is useful when the
players are allowed to enter or leave in the middle of a game. The dispatcher
on the server may allow or disallow the join/leave, and then broadcast the
appropriate net event to the dispatchers on the other clients. It is possible for
the programmer to disable the dispatcher in situations where it is undesirable
to have players enter or leave the game (for instance, the middle of a hand
of poker might be an inopportune time for a new player to join the table).

2.5 Game Clock

The players in an asynchronous networked game are likely to have network
connections of varying speeds. In games with minimal synchronization, there-
fore, a game clock is necessary to ensure that no player is at a disadvantage as
a result of variations in network performance. For instance, in a networked
quiz game, if one player were to buzz in with the answer, it might be the case
that the player had seen the question for a longer time than other players
because the question message got to him first. To overcome this problem,
each player keeps a local game clock. In the quiz game example, the clock
starts when the question message is received and its value is sent to the server
when the player buzzes in. When the server receives the buzz-in message,
it then sends a request to all other clients with the time indicated on the
buzz-in message. Each client responds by checking in with the server if they
have not sent a buzz-in message by the time the specified time is reached.
Once the server has received either a buzz-in message or a check-in message
from every client, it knows that every player has had an equal opportunity
to buzz in, and can thus determine the true winner based on the buzz-in
message with the minimum clock time.

4



2.6 Shared Game Object

A shared game object is an object within the game whose state can be changed
or observed by more than one player, simultaneously or at separate times.
One example of a shared game object is the ball in the Pong game (described
in Section 5.3), whose state can be changed by all players at separate times
but is observed by all players simultaneously.

2.7 Danger Zone

Each game state in which multiple players need to access a shared object
simultaneously, or in which multiple players are interacting directly with
each other in a timing-critical way, is called a danger zone. The number and
frequency of danger zones varies from game to game – in the Pong game, for
example, danger zones occur only when a ball is close to a paddle. Within
its danger zones, a game absolutely must be synchronized to prevent the
creation of divergent game states.

2.8 State Buffering

To decrease message bandwidth, it is sometimes possible to allow a small
divergence in the game state until a point where this divergence could cause
a violation of the game rules. We call this state buffering. For instance,
in the Tron game (described in Section 5.2), the player could send events
every five moves, as long as it is not within five moves of colliding with any
other player. Since what any particular player is really seeing with such state
buffering is the other players’ positions from five moves ago, it is possible for
the other players to be anywhere within a five move radius of their positions
on the player’s screen.

3 Game Design Considerations

Networked games differ in the restrictions placed on them by the game rules
and the allowable player interactions. Before a networked game can be effec-
tively coded, possible performance bottlenecks resulting from particular as-
pects of the game must be identified and dealt with. Each of these presents
a design problem for the programmer and must be considered before any

5



coding takes place. In this section, we examine the design problems which
arise in networked games, and discuss possible solutions to these problems.

3.1 Communication Volume

While modern computers are powerful enough to seamlessly handle most
game-related computations, the amount of data communicated between play-
ers and the server is the most important restriction on networked game per-
formance because of network latency. We call this amount of data, which
should be the main factor in determining what information needs to be sent
over the network and how it should be encoded, the communication volume.
For games requiring a very small communication volume, it may be suffi-
cient to communicate all known state information (thus greatly simplifying
the game programming), but, more often than not, a game programmer will
need to choose a subset of the state to be communicated.

The programmer must keep the communication volume in mind when
choosing the communication protocol to be used by the game. While using
a high-level communications layer may greatly simplify the programming
process, some communication-intensive games require reverting to lower level
protocols such as TCP and UDP. For instance, we have successfully used the
communications layer provided by the Caltech Infospheres Group’s info.net
package [4] for two of our example games, but found it inadequate for the
third, for which we used UDP directly.

The communication volume also determines the amount of data stored
in the PlayerTable. For games with high communication volume, the main
PlayerTable may be subdivided into smaller ones if there are states in which
it is reasonable to broadcast only partial information.

3.2 Communication Density

Just as communication volume differs from game to game, so does com-
munication density, the amount of communication which must take place
within a certain amount of time. The communication density of a specific
game, moreover, may vary wildly at different points during gameplay - even
games with low average communication density may have some states with
extremely high communication density, where more information than usual
must be exchanged between clients. In a Pong-style game, for example, the

6



states where the ball is close to a player’s paddle require much more com-
munication than the states where the ball is in the middle of the screen. If
not handled properly, points of high communication density may cause an
unacceptable decrease in game speed.

The programmer should try to make the communication density of a game
as uniform as possible, as a way to minimize “spikes” of high communica-
tion density. One way to accomplish this is by subdividing the PlayerTable;
another is to use state buffering as much as is permitted by fairness and
synchronization considerations (described below).

3.3 Synchronization

Synchronization is one of the limiting factors in the optimization of communi-
cation density. The rules of any asynchronous game require synchronization
to occur at some states, even if this synchronization is only to determine
who wins. If the players are not already synchronized at that point, as when
state buffering takes place, the buffering causes the communication density
to increase. Hence, the frequency of synchronized states is a restriction on
the usage of state buffering.

Synchronization is also important in terms of timing. Message delay is
a big problem in asynchronous games, because the outcome of a player’s
actions often depends on the timing of these actions with respect to those of
the other players. For example, in the Set card game only the person who
first claims the set may get the point for finding it. However, we assume that
for the game to be fair, the “speed” of his response should not depend on the
speed of his connection or processor. In this case, synchronization is handled
using a game clock to ensure that each player gets an equal opportunity to
find the set.

3.4 Quality of Service

Quality of service considerations come into play when dealing with players
who inhibit the gameplay significantly more then the rest. This may occur if
a player is joining/leaving the game, or if he has problems with his connection
or computer. These decisions are largely game-dependent, but may involve
timeouts or special game states. For example, timeouts for slow/broken
connections and time adjustments for players who entered the game in the

7



middle of a hand (and are thus at a disadvantage compared to other players)
are implemented in the Set game.

3.5 Communication Scoping

In some situations, not all players need to be notified of a certain net event.
The restriction of communications such that only a subset of players is noti-
fied about a particular net event is called communication scoping. If a game
requires unusually high communication volume for every net event, or if there
are a large number of net events which are only important to one or two out
of a group of players, communication scoping can save a lot of time and
improve game responsiveness. For instance, a game where players are not al-
ways in each others’ fields of view might benefit greatly from communication
scoping, since unobservable movements would not need to be communicated
as frequently to ensure state consistency.

4 Transformation Rules

This section details a set of transformation rules which take a single-computer
multi-player game and produce a networked multi-player game.

1. Save game code twice, as GameServer and GameClient

The first step in writing a client-server application is to have both a
client and a server. Both the client and the server need to know some
of the game rules, and transforming them both from the original source
code of the single-computer game is the easiest way to give them this
knowledge.

2. Define shared state information to be stored in the Play-
erTable

In any multi-player game, players need to know certain information
about each other when they join the game (this may include other
players’ names, identifying numbers, positions in the game, and scores).
All of this information should be stored in the PlayerTable, so that a
player joining the game can learn the entire current state of the game
just by receiving the PlayerTable.

8



3. Implement net event handlers to communicate net events

This is the key to transforming the single-computer game into a net-
worked game. In the single-computer model, when a user interacts with
the game, an event is posted to that computer’s event handler. In a
networked game, events are posted to net event handlers when players
interact with their respective clients.

It may be desirable to have multiple net event handlers for multiple
net event types. For instance, one could implement a membership
handler, which handles all events generated when clients join or leave
the game, and a game event handler, which handles all events related
to actual gameplay. The use of multiple net event handlers allows for
automatic sorting of net events, which reduces the overhead required to
sort messages; however, each net event handler requires its own thread,
which increases thread-related overhead on each client system.

4. Determine which events need to be communicated to other
clients and the server

Some local events in a game may not need to be shared with the server
or the other clients, and can instead be handled solely by the local game
client. These events include invalid game actions and any events which
do not modify the state of the game. For instance, if a player wanted to
look at her game statistics, the other clients would not be thrown into
a divergent game state if they were not informed of this local event.
To reduce communication volume, only events which change the game
state should be communicated to the server.

5. Determine which information needs to be centralized

Centralized information is data which the server needs to maintain and
broadcast to the game clients. For instance, in a card game, it might be
desirable to have the server keep track of the deck so that it can shuffle it
and then deal cards to the clients. However, to save on communication
volume, each client could have a copy of the deck. The server could
then give each client a random number seed at the beginning of the
game, and each client would shuffle the deck using this seed and deal
the appropriate cards based on previous game events and the game
rules. The use of previous game events and game rules to change or
define the game state without receiving a message explicitly detailing

9



the new state is called a derived update. As much as possible, the client
should be written to use derived updates, because this minimizes the
amount of communication between clients and the server.

6. Have clients send all shared events to the server

Clients must send all shared events to the server, which will then send
the events to all other clients and thereby keep the game state consistent
among all clients. The server keeps track of the game state in the same
way as the clients, by watching for shared events and using the game
rules - it can therefore bring new clients up-to-date with the game
state quickly, by sending them the current PlayerTable and any other
centralized state information resulting from shared events.

7. Determine the danger zones

Whenever a client enters one of the game’s danger zones, it may become
necessary for it to cease operations until it receives an update of the
game state. This is necessary when a shared game object is being
modified by a remote player. The client only knows what the remote
player has done up until the last net event it has received from that
player, but the remote player may have sent more event messages that
have not been received. Before the client lets the remote player modify
the shared object, it needs to determine exactly what the remote player
is doing. This may present a bottleneck, and must be considered in the
transformation process. Once the danger zones of the game, if any have
been identified, there are various methods for handling the necessary
synchronizations.

One method, which may result in unacceptable overhead if danger zones
are frequent, is to simply synchronize on every game iteration which
takes place within a danger zone. Another is to stop play on all clients
except the one which can potentially modify the shared object, which
then records everything it does with the shared object and broadcasts
an update to the other clients. Also, in some games, if a client sees that
a shared object is headed for a danger zone it can slow the movement
of the shared object on the local display until it receives the update
message, so that there is a seamless transition rather than an abrupt
halt while waiting for synchronization.

If two or more players’ danger zones overlap, then the only way to

10



maintain a consistent state is to have these players synchronize on
every game iteration. No single player can be responsible for recording
the state, since multiple players could have had an effect on it.

Only a certain subset of games can really be classified as having clearly
defined danger zones. Some games have the entire playing field (or
nearly the entire playing field) as a synchronization region, and must
therefore synchronize on every game iteration. Such games are the
hardest to implement effectively in a network environment, because
they require a very large communication volume.

5 Example Games: Set, Tron, Pong

5.1 Set

Set is a card game in which twelve cards are laid out on a table and players
examine the cards trying to find a set of three which meets certain require-
ments. When a player spots a set, she calls it and has five seconds to pick
up the cards comprising the set. If the cards are actually a set, she keeps the
cards. If she is incorrect and they are not a set, or if her time expires, then
she must put the cards back and also put three cards from her pile (if she
has one) back into the deck. The winner of the game is the player who has
the most cards in her pile when there are no cards left in the deck.

Set can be implemented as a single-computer game by giving each player
a key to press when she wants to call a set. The PlayerTable contains each
player’s name and a list of the cards each player has won. When a player
presses her key, the game announces who called the set and allows her to
click on the cards comprising the set. If the player runs out of time or picks
an invalid set of three cards then the game announces that the cards were
invalid and leaves them on the table. It also puts three of the player’s cards
from his pile back in the deck and shuffles the deck. If the player gets a valid
set of three cards, the game takes those cards off the table and puts them
in the player’s pile, and then deals a new set of three cards onto the table.
When there are no cards left in the deck and no valid sets of three cards on
the table, the game is over.

To convert this into a networked game, we first save the single-computer
version as both the client and the server. As stated previously, the Play-
erTable consists of the players’ names and piles of cards. Since the Play-

11



erTable construct was used in the single-computer version of the game, it is
easier to transform the single-computer version to a networked version.

We use two net event handlers to handle all network messaging. One
of the event handlers deals with players joining and leaving the game at
any time. The other event handler deals with all other game actions. We
determine the net events necessary for the game to be “Player Joins”, “Player
Leaves”, “Player Claims Set”, “Player Checks In”, “Player Clicks Card”,
“Player Runs Out of Time”, and “Server Deals Cards”. The join/leave event
handler handles “Player Joins” and “Player Leaves” messages, and the action
event handler handles all other game actions.

The client needs to share three events with other clients: “Player Claims
Set”, “Player Clicks Card”, and “Player Runs Out of Time”. However, these
events don’t need to be shared all the time. If a player has not claimed a
set, she isn’t allowed to click on a card and therefore “Player Clicks Card”
events don’t need to be shared with all other clients. Also, if a player is in
the process of picking up cards, then no other player is allowed to claim a
set and therefore “Player Claims Set” events don’t need to be shared.

Other changes in game state can be derived from these shared events.
For instance, the server does not need to inform all the clients when one
player has picked an invalid set of cards, because all the clients have received
the three Player Clicks on Card messages and can determine for themselves
whether the set was valid or not. If it was valid, they can remove the cards
from the table and put them in the player’s pile without receiving an explicit
message instructing them to do so, and then wait for the next three cards to
be dealt. If the set wasn’t valid, the clients know to leave the three cards on
the table and take three cards out of the player’s pile.

A player running out of time is something of which the local client needs
to inform everyone, because only the local client can be sure that five seconds
have passed without the player clicking on three cards. If other clients tried
to determine that five seconds had passed before the player had clicked on
three cards, they might do so incorrectly because a “Player Clicks on Card”
message might still be in transit.

When the server receives game action messages, it forwards the messages
on to the other clients and also keeps track of the game state itself. That is,
when it receives a “Player Clicks on Card” message, it actually modifies its
own copy of the game state to mark this event. This way, the server maintains
the same state as the clients and is able to determine, using the rules of the
game, when it should deal cards, remove cards, or take other game actions.

12



If the server didn’t keep track of the game state itself, extra messages (such
as requests from clients for cards to be dealt) would be necessary.

The server disallows joining the game (by suspending the join/leave event
handler) when a player is in the process of picking up cards from the table.
This makes it unnecessary to keep currently selected cards in the PlayerTable
state information. If a client could join while another player was selecting
cards, this client would need to know which cards were selected when it joined
so that it can have a consistent game state.

The shared game object in Set is the card table. Players can affect it
when they claim a set, so the clients need to synchronize whenever anyone
tries to claim a set. This is implemented in a fair way using a game clock.
Each client has a timer which keeps track of how long the current set of
cards have been displayed (the time since the last three cards were dealt).
When one of the clients attempts to claim a set, it sends the time on its
game clock to the server as part of its “Player Claims Set” message. Each
of the other clients then sends a “Player Checks In” message when its clock
reaches this time (or if the clock has already exceeded this time) if the player
has not attempted to claim a set herself. When the server receives either
a “Player Claims Set” or “Player Checks In” message from every client, it
determines the actual winner to be the client with the minimum clock value
on its “Player Claims Set” message and gameplay continues.

5.2 Tron

Tron is a game in which players traverse the game board, leaving behind
an impenetrable trail which no player may cross. If a player hits any trail,
including her own, she loses. To implement this as a single-computer game,
each player is assigned a different set of keys with which to control his move-
ments.

To convert this into a networked game, we first save the single-computer
game as both the client and the server. The PlayerTable contains the players’
names and scores (how many times they’ve won by being the last left alive).

As in Set, we use two event-handlers. One handles players joining and
leaving the game, and the other handles all other actions. Joining and leav-
ing are disallowed in the middle of a game round, so players’ positions and
directions do not need to be stored in the PlayerTable. The only net event
is “Player Turns”, which contains the direction in which a player turned.
All other gameplay information can be derived using this net event, since

13



each player moves at a constant rate in the direction she was last facing.
Therefore, each client can independently determine when collisions occur
and handle them appropriately.

The server’s main responsibility is to handle the joining and leaving of
clients. The server only allows clients to join and leave between rounds; it
keeps track of the game state in the same way as the clients, so it always
knows when a round is over.

The main problem with Tron is the amount of synchronization required
to maintain consistent game state across clients. If a client simply sends
“Player Turns” messages indiscriminately, they can arrive at any time and
the other clients will see that player turn at various different times, producing
divergent game states. The shared game objects in Tron are the players’
trails, so every time a player turns (or doesn’t turn), she is affecting the game
state by extending her trail. This would seem to indicate that players need
to synchronize on every game iteration. To reduce communication volume,
though, we note that a player’s next move is only critically important if any
other player is within one move of that player, because only then could it
possibly cause a collision.

The implementation can take advantage of this by synchronizing only
every n moves, where n is an arbitrary constant which will be chosen to give
acceptable performance. This means that after every n moves, the player
sends his last n moves to the server as a single message. The resulting
movement of the player on other clients can be made seamless by displaying
the n moves gradually (one per iteration). This means, however, that each
client is actually seeing what the other players did n moves ago. If two clients
are within n moves, they need to synchronize more closely to make sure that
each player is not actually running through the other player’s trail simply
because the n move buffer hasn’t caught up. The danger zone for Tron,
therefore, is when two players are within n moves.

5.3 Pong

Pong is a game where multiple players control paddles situated on the sides
of the screen. The goal for each player is to keep a moving ball from passing
her paddle, by maneuvering the paddle such that the ball bounces off it. For
this game, our transformations proceed along almost exactly the same lines
as Tron. First, we write the single-computer game, with each player having
a different set of keys. Next, we save the game as both the client and server.

14



Again, the PlayerTable contains only the players’ names and scores.
The only action message is “Player Moves Paddle”, and the shared game

objects are the paddles and the ball. The position of the ball can be calcu-
lated based on its previous position and trajectory, taking into account the
positions of all paddles, which can be calculated using the “Player Moves
Paddle” messages. However, a client doesn’t even need to know the exact
paddle position for the other players unless it is possible for the ball to ac-
tually hit one of the paddles. Therefore, synchronization of clients need only
occur when the ball enters the small strip of play area where a player’s paddle
may be. The danger zone for Pong, therefore, is that small strip of play area.
The client of the player controlling this paddle records all “Player Moves
Paddle” net events while the ball is in this region and synchronizes with the
other clients. This is quite different from Tron, where every single movement
made by each player must be communicated to the other players.

6 Comparison to Other Methods

The need for systematization of networked distributed programming is dis-
cussed by other authors in [3, 7]. The problems of network delays [1] and
increased programming complexity [5] are also addressed elsewhere.

The process of transforming a single computer application into a net-
worked one is examined in [5], mainly with regard to already existing ap-
plications. However, this examination largely neglects the benefits of this
approach, instead regarding it as a problem that needs to be overcome. We,
on the other hand, believe that this transformation technique is quite useful,
and that the reason it has presented difficulty in the past is that most pro-
grams to which it has been applied were not specifically designed with such
extension in mind.

Because of that, we have found the existent proposals of single-computer
to multi-computer transformations to be rigid and unpermissive. The pre-
dominant attempt in the field has been to automatize the transformation
as much as possible by creating an “absolute data sharing” model, as in
[3], where all state information is shared by broadcasting every state change
among all participating parties. We feel that this approach, while suitable
for some specific applications, is impractical for most multi-player games,
mainly because of speed constraints.

Many distributed computing models employ techniques similar to our

15



net event handling. For instance, CORBA [7] technology employs stubs and
skeletons to isolate the transformation of network communications into local
data.

James Begole, of Virginia Tech, favorably compares the event broadcast-
ing model to display broadcasting in [3] and suggests a view of a game as
a sequence of states for each player in [1]. He has also identified the event-
driven nature of the games and has developed a “retardation” technique [1],
similar to the state buffering described in our paper. We have used these and
other concepts to form a logical system of transformations, presenting an or-
ganized and intuitive method for identifying and employing these concepts.

Many of the concepts we have defined have already been implicitly utilized
in other applications, but have not previously been clearly formulated or
organized. In fact, many existing applications and frameworks can be used
to actually implement the ideas presented here.

7 Conclusions

In this paper, we have described a process to systematize and simplify the
construction of networked asynchronous games. Our approach relies on pro-
ducing a single version of the game, which is easier to create in terms of
programming and design, and subsequently transforming it into a networked
client-server game. To that end, we have developed a set of constructs and
transformation rules to address the issues which arise in multi-player net-
worked gaming. Our constructs allow vital game information to be viewed
as local events, so that the need for new code, and therefore the possibility
of introducing bugs and other problems into the game, is minimized.

These transformation rules help the programmer by allowing him to im-
plement synchronization points, shared states, and network events as exten-
sions to the single computer version. At the same time, they are formulated
so as to allow for game-specific optimizations and to not impose unnecessary
limitations on the program design.

The usefulness of the transformation rules was demonstrated in the con-
version of three different games, each representing a different degree of mes-
sage and synchronization complexity. Our method, therefore, provides a con-
venient framework for the conversion of single-computer multi-player games
into a networked client-server games, regardless of game complexity.

16



References

[1] Begole, J., and Shaffer, C.A. (1997). Internet Based Real-Time Multiuser
Simulation: Ppong!. Technical Report, Virginia Tech Department of Com-
puter Science.

[2] Begole, J., Struble, C.A., and Shaffer, C.A. (1997). Leveraging Java Ap-
plets: Toward Collaboration Transparency in Java. IEEE Internet Com-
puting, volume 1, number 2, pp. 57-64.

[3] Begole, J., Struble, C.A., Shaffer, C.A., and Smith, R.B. (1997). Trans-
parent Sharing of Java Applets: A Replicated Approach. In conference
proceedings – the 1997 Conference on User Interface Software and Tech-
nology (UIST’97).

[4] Chandy, K.M., Kiniry, J., Rifkin, A., and Zimmerman, D. (1997). The
Infospheres Infrastructure User’s Guide. Technical Report, California In-
stitute of Technology.

[5] Crowley, T., Miazzo, P., Baker, E., Forsdick, H., and Tomlinson, R.
(1990) MMConf: An Infrastructure for Building Shared Multimedia Ap-
plications. In conference proceedings – the 1990 Conference on Computer-
Supported Cooperative Work (CSCW’90).

[6] Grandmaster Technologies Corp. (1996). CyberSite Internet Collabora-
tion Engine, URL http://www2.tcc.net/CyberSite

[7] Mowbray, T.J, and Zahavi, R. (1995). The Essential CORBA: System
Integration Using Distributed Objects. John Wiley & Sons, Inc. New York.

[8] Wilson, A. (1997). An Internet Game Server in Java. Web Techniques
Magazine, March 1997.

17


