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Abstract—Design by Contract (DBC) is an oft-cited, but
rarely followed, programming practice that focuses on writing
formal specifications first, and writing code that fulfills those
specifications second. The development of static analysis tools
over the past several years has made it possible to fully
embrace DBC in Java systems by writing, type checking,
and consistency checking rich behavioral specifications for
Java before writing any code. This paper discusses a DBC-
based, verification-centric software development process for
Java that integrates the Business Object Notation (BON), the
Java Modeling Language, and several associated tools including
the BON compiler BONC, the ESC/Java2 static checker, a
runtime assertion checker, and a specification-based unit test
generator. This verification-centric process, reinforced by its
rich open source tool support, is one of the most advanced,
concrete, open, practical, and usable processes available today
for rigorously designing and developing software systems.
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I. INTRODUCTION

Design by Contract (DBC) [1] is a design technique for
(usually object-oriented) software that uses assertions both
to document and enforce restrictions on data and to specify
class and method behavior. The Business Object Notation
(BON) [2] is an analysis and design notation for object-
oriented systems based on DBC. Both were originally de-
veloped for use with the Eiffel programming language; DBC
has since been added to many other programming languages
through various language extensions and preprocessors.

Ideally, developers using the DBC technique write formal
specifications (the contracts) for their software first, and
write executable code only after completing, and performing
at least some basic checking of, the contracts. However, tool
support for DBC has until recently been limited primarily
to runtime assertion checkers and unit test generators. There
has been little support, beyond basic type checking, for
verifying the logical consistency of contracts that have no
implementations. In essence, the “design” component of
DBC has been absent; DBC has meant writing contracts
and code in tandem and using runtime assertion checking
(RAC) and generated unit tests to check the contracts and
code simultaneously. Unfortunately, when code is written in
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this way, it is often difficult to determine whether problems
detected by RAC and unit testing are caused by errors in
the code or by errors in the contracts.

In recent years, however, the tool landscape has changed
significantly. The Java Modeling Language [3] (JML) has
enabled both DBC and additional model-based specifications
for Java programs, and the ESC/Java2 static checker has
been extended to support the entirety of JML [4]. Addi-
tionally, a variety of static checkers have been added to
ESC/Java2 to support reasoning about specifications. These
tools allow developers to write, type check, and statically
check the consistency of rich behavioral specifications before
writing any code.

The combination of BON and DBC (for design),
ESC/Java2 and other tools (for static checking), and RAC
and the automatic generation of unit tests from specifications
(for runtime checking) results in a verification-centric de-
velopment process, in which verification of both behavioral
specifications and program implementation occurs continu-
ously throughout development. This process supports the en-
tire range of development artifacts via refinement, including
concepts, requirements, feature models, types, mathematical
models, informally and formally annotated source code,
and formally annotated object code. We have previously
discussed our use of ninja techniques to teach this process
to our software engineering students [5]; here, we present
the steps of this process from the practitioner’s perspective,
along with more detail about the critical tools and techniques
involved. We also present process guidelines, including our
code standard and our testing requirements.

II. BACKGROUND

Our verification-centric software development process in-
corporates several tools and techniques. In this section, we
introduce and provide background on the most important of
these. More detailed descriptions are available in the cited
works and in the documentation accompanying the tools.

A. Design by Contract/Contract the Design

Design by Contract (DBC) is a term coined in the 1980s
by Meyer [1]. Our historical perception is that early propo-
nents of DBC were Eiffel users and pragmatic correctness-



by-construction formal methodologists who actually wrote
software systems.

Eiffel encourages programmers to use contracts both
by incorporating specification constructs like preconditions,
postconditions, and invariants directly into the language and
by providing a rich set of libraries with specifications and
extensive design and development documentation [6]. The
use of Javadoc [7] in the early development of Java is
another example of such implicit proselytizing; the high-
quality documentation available for the core Java libraries,
and the integration of that documentation into the source
code, has encouraged many Java developers to follow suit.

It has now been over fifteen years since FEiffel’s intro-
duction, and a new standardization effort was recently com-
pleted [8]. However, Eiffel still has limited support for rich
contracts with quantifiers, and little implemented support
for mathematical models, data and program refinement, and
other specification constructs that have been found to be
invaluable in adjacent research communities such as the JML
community [9], [10]. Also, while Eiffel’s tool support has
evolved, it is not as comprehensive as that of larger and less
fragmented communities.

As a result, Eiffel developers (as well as developers
who use DBC frameworks in other languages) often carry
out a process that we call Contract the Design (CTD).
CTD is effectively the logical dual of DBC; in CTD, the
contracts are written after the executable code in an attempt
to formally specify its desired behavior and subsequently
test the existing code against that behavior. CTD allows DBC
advocates to, in the spirit of Parnas and Clements [11], “fake
a rational [DBC] process”. Clearly, delivering software with
accurate documentation and specifications—even those writ-
ten after the code is complete—is significantly better than
delivering a system with no formal descriptions whatsoever.

Our experience has been that, though CTD is sometimes
necessary, starting with DBC and writing formal speci-
fications before writing any code results in both better
specifications and better code. In order to effectively practice
DBC in tandem with CTD, quality tool support for reasoning
about program development artifacts other than executable
code is necessary. As previously noted, such tool support
does not currently exist for Eiffel. However, it does exist
for Java in the form of various tools that work with JML.

B. The Java Modeling Language

The Java Modeling Language (JML) [12] is a specification
language for Java programs. In addition to supporting class
and method contracts in the DBC style, it allows developers
to specify more sophisticated properties up to and including
full mathematical models of program behavior. Several tools
work with JML, including compilers, static checkers, test
generators, and specification generators [13].

The Common JML tool suite is the “canonical” set of
JML tools. It includes a type checker (jml), a JML com-

piler (jmlc) that compiles JML annotations into runtime
checks, a runtime assertion checker (jmlrac), a version of
Javadoc (jmldoc) that generates documentation including
JML specifications, and a unit test generation framework
(JML-JUnit, discussed further in Section II-D). These tools
have interfaces similar to those of their Java counterparts;
for instance, jmlc behaves very much like javac. They
can be used from the command line, in project build config-
urations with build systems like GNU Make and Ant, and
in integrated development environments such as Eclipse.

Support for modern Java (version 5.0 and later) syntax
in JML—including generic types—is still being developed.
The JML4 project [14] is an effort to integrate JML into
the Eclipse IDE, and OpenJML!' is an effort to build a
JML compiler based on the current OpenJDK? code base.
While the process described here has been developed with
the Common JML tool suite, the newer JML toolsets will
function as drop-in replacements when they become gener-
ally available.

C. ESC/Java2

ESC/Java2 [4], an evolution of the original Digital SRC
ESC/Java [15], is an extended static checker for Java.
ESC/Java2 statically analyzes JML-annotated Java classes
and interfaces at compile time to perform two main func-
tions. First, it identifies common programming errors such
as null pointer dereferences, invalid class casts, and out-of-
bounds array indexing. Second, it performs several kinds of
verification to attempt to ensure that the code is correct with
respect to its associated JML specifications.

Several new checkers have been developed atop
ESC/Java2 to address the challenges we have faced during
verification-centric systems development. For example, it is
easy, especially for developers who are just learning DBC,
to write inconsistent specifications such as preconditions that
collapse to a logical false. Originally, ESC/Java2 would hap-
pily claim that methods fulfilled such specifications, because
any verification condition can be proven valid from a false
antecedent; with the addition of a specification consistency
checker, such specifications now generate warnings.

The new checkers that we use in our process include a
soundness and completeness warning system [16], a specifi-
cation-aware dead code detection system [17], an improved
loop invariant generation subsystem [18], the aforemen-
tioned specification consistency checker, and others.

As with JML, support for modern Java syntax and con-
structs in ESC/Java is still being developed. We expect
to incorporate support for modern Java in the next major
version of ESC/Java; another extended static checking tool,
ESC4 [19], is also being developed as part of the JML4
toolset.

Uhttp://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/OpenJML/
Zhttp://openjdk.java.net/
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D. Unit Testing and Static Checking: Partners in Quality

Static checking is not sufficient to find all potential code
problems, as there are many program properties that cannot
be statically checked automatically [20]. Unit testing, a
technique that exercises individual units (packages, classes,
methods) of a system with known inputs to verify that they
generate expected outputs, helps address this insufficiency.

Considerable research has been devoted to finding ef-
ficient ways to run and analyze the results of unit tests,
as well as to the generation of good sets of unit tests
for particular systems [21]. In practice, however, the vast
majority of unit tests are written using a manual process
whereby the developer considers each method under test,
determines good inputs to test it with, determines what the
generated outputs for those inputs should be, and writes a
test oracle to call the method with the test inputs and validate
its outputs.

The JML-JUnit tool takes a different approach to unit
testing: it generates unit tests that use the JML runtime
assertion checker as a test oracle, eliminating the need for
the developer to write one [22]. All the developer must
do is tell JML-JUnit what data values to use as method
parameters for testing. In this way, a test passes if there
is no runtime assertion checking error generated when
the method is called, and fails otherwise. This technique
saves considerable effort, since the developer no longer has
to write his own test oracles; however, its effectiveness
depends on the correctness and completeness of the JML
specifications, which is why it must be used in conjunction
with the previously-discussed static checking techniques.

E. Other Specification Tools

We have used several other tools that support JML in
various projects. The tools that have demonstrated a great
deal of utility in our process are Daikon [23], Houdini [24],
and RCC/Java [25].

Daikon performs invariant detection by dynamically ob-
serving a program as it executes and reporting properties
that held throughout the execution. Since Daikon generates
JML, it is sometimes used to “bootstrap” the identification of
invariants in CTD processes. It can also be helpful in finding
invariants that a designer simply missed during DBC.

Houdini also generates JML but, instead of observing a
system as it runs, uses heuristics to statically guess likely
assertions. These guesses are then analyzed with other static
checkers, such as ESC/Java, to determine their validity.

RCC/Java, unlike the previous two tools, does not gen-
erate JML. Instead, it statically analyzes concurrent Java
source code to find potential race conditions. Annotations
are used to indicate the relationships among objects (via
references) and locks to express ownership, and among locks
to express lock orderings.

These tools, along with the rest of the JML-related tools
already discussed, are being integrated into the Mobius

Program Verification Environment (PVE)® as part of the
ongoing theoretical and development work of the EU FP6
Mobius project*. Our plans for formal process integration
(concrete tool support for guiding a developer through our
process) include environment documentation and support
for process checklists, development waypoints, and context-
aware hints.

E. Other Code Analysis Tools

In addition to JML and its related tools, the Mobius
PVE includes custom-tuned versions of FindBugs,> PMD,°
JavaNCSS,” and CheckStyle,® all of which are publicly-
available open source static analysis tools for Java. These
enforce the guidelines of our development process, includ-
ing our coding and documentation standards (described in
Section IV). By carefully configuring these tools for use
within our verification-centric process, we enable a “flow
like water™® style of quality software creation.

III. A VERIFICATION-CENTRIC PROCESS

Our verification-centric Java software development pro-
cess is derived from the BON method [2], which we have re-
fined with the specific goal of generating verifiable software.
We use BON instead of the widely-used Unified Modeling
Language (UML) for two main reasons. First, BON was
originally designed to be used with Eiffel’s DBC process,
so it is a good fit for our verification-centric process. Second,
BON has an easily-readable, English-based textual notation,
in addition to a graphical notation that is much simpler than
UML. An analogue to our process could certainly be imple-
mented with UML and the Object Constraint Language, but
we will not discuss such an implementation here.

Our development process has six steps: concept analysis;
identification of queries, commands and constraints; refine-
ment of concepts; refinement of queries and commands;
refinement of constraints; and finally, implementation. In this
section, we describe each step in detail.

While we describe the process in a “waterfall” style, in
practice it is rarely used that way. The process has been used
in a “spiral” fashion as well as with extreme programming
techniques. The reason the process works within these
different development styles is that our underlying formal
foundations, as realized in our specification languages and
tools, are refinement-centric. In particular, the refinements
used are all reversible (discussed further in Section III-G).

The general notions and facets of this process are not
novel. What is novel is our particular, concrete instantiation

3http://mobius.ucd.ie/

“http://mobius.inria.fr/

Shttp://findbugs.sourceforge.net/

Shttp://pmd.sourceforge.net/
Thttp://www.kclee.com/clemens/java/javancss/
8http://checkstyle.sourceforge.net/

9.. .as expressed by Chinese philosopher Laozi in the Tao Te Ching.
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class_chart TUNER
query
“What station are you tuned to?”,
“What is the station assigned to preset the_preset?”,
“What is the frequency of station the_station?”
command
“Tune to station the_station!”,
“Tune to preset the_preset!”,
“Assign station the_station to preset the_preset!”
constraint
“A station preset is an integer from 1 to 8 inclusive.”,
“A station is an integer from 200 to 300 inclusive.”,
“The frequency of station the_station is
((the_number | 5) + 47.9) MHz.”

Figure 1. BON class chart for an FM tuner.

of these facets via underlying theory and tools and, more
importantly, the fact that we and others have actually used
this process over the last several years to develop a number
of complex industrial and academic systems.

A. Concept Analysis

The first step in the process, concept analysis (also known
as domain analysis), involves identifying and naming the
important concepts (also called classifiers) in the software
system and collecting them into sets of related classifiers
called clusters. We also specify the is-a and has-a rela-
tionships among concepts. At this stage of development,
we are not talking about “classes” in the implementation
sense. A classifier might eventually refine to a class, and its
relationships to other classifiers might refine to inheritance
and containment relationships among classes; it might also
refine to more than one class, or even refine away entirely.

The goal of concept analysis is to generate a vocabulary
for working with the desired system, as well as a very coarse
“picture” of the relationships within it. For example, if we
are trying to model an automobile, the classifiers we list
might include a wheel, an engine, a radio, a tuner, a volume
control, a dial, etc. The relationships might include “a radio
has-a tuner” and “a volume control is-a dial”.

Concepts and clusters are specified using BON class
and cluster charts. The BONC compiler checks that every
concept mentioned in a system specification has a definition
and a cluster, and that all clusters are organized into a
hierarchy. It also checks the high-level type structure of
concepts and clusters for type and containment cycles.

Fig. 1 shows a BON class chart for an extremely simpli-
fied North American FM radio tuner, including the queries,
commands and constraints described in the next section. In
an actual implementation we would likely use inheritance to
constrain a generic FM tuner (a North American FM tuner
is-a FM tuner); for space reasons, we do not do so here.

B. Queries, Commands and Constraints

Once we have our vocabulary and our set of relation-
ships, we identify the queries, commands, and constraints
associated with each concept. A query is a question that a
concept must answer, such as “What station are you tuned
to?”; a command is a directive that a concept must obey, such
as “Assign station the_station to preset the_preset!”; and a
constraint is a restriction on query responses or command
contexts, such as “A station preset is an integer from 1 to
8 inclusive.” Composite query/commands (or query/queries)
such as “Tune to preset the_preset and tell me the station
you were previously tuned to!” are not allowed.

Each query, command, and constraint must be a simple
English sentence written using a restricted vocabulary: the
concepts identified in the concept analysis step; numbers and
basic arithmetic operators; comparison terms (“‘at least”, “at
most”, etc.); quantification terms (“every”, “any”, “some”,
etc.); articles; and some common nouns and verbs. Each
query ends with a question mark, each command with an
exclamation point, and each constraint with a period. These
requirements help to eliminate ambiguity in the process of
defining queries, commands and constraints; because each
must be a simple English sentence, each must describe a
small, manageable piece of functionality, and it is clear ex-
actly what each does. The strict separation between queries
and commands—reinforced by the fact that one cannot write
a composite query/command as a simple English question or
exclamation—makes verification easier, because it explicitly
differentiates operations that can cause changes to system
state from operations that cannot.

C. Refinement of Concepts

After identifying all the queries, commands, and con-
straints, we refine our concepts into appropriate module-
like constructs (such as Java packages) and type-like con-
structs (such as Java classes and JML model classes). The
refinement targets are nearly always constrained by one’s
environment (team, company, process, etc.); Java and JML
constructs are not the only possible choices for use with our
method—we could use C# classes instead, or refine to B
specifications or Z schemas—but they are the ones we have
developed and used the method with, and thus the ones we
describe here.

Clusters refine to module-like constructs. With JML and
Java, they typically refine to Java packages. If aggregating
the higher-level concepts makes sense from a maintenance
perspective, a set of clusters can refine to a single package.
For example, having a package that contains only a class or
two is often more trouble than it is worth.

Concepts, on the other hand, refine to type-like constructs.
With JML and Java, they refine to primitive types, interfaces,
abstract classes, concrete classes, and (possibly pure or
immutable) model classes. Both clusters and concepts may
be eliminated or aggregated at this stage, primarily because



/*% Q@return What is the frequency of station
the_station? =/
//@ requires 200 <= the_station & the_station <= 300;
//Q ensures \result == (the_station / 5) + 47.9;
public /*@ pure @+/ float frequency
(final int the_station) {
//@ assert false;
assert false;
return 0.0f;

/+* Tune to station the_station! =%/
//@ requires 200 <= the_station & the_station <= 300;
//@ ensures station() == the_station;
public void tuneToStation(final int the_station) {
//@ assert false;
assert false;

}

Figure 2. Method signatures with JML specifications.

they refine to implementations that already exist within the
system under design, the Java language, or the standard Java
class libraries.

Once the Java and JML constructs are identified, the
queries, commands, and constraints are transferred into their
corresponding constructs as specially-formatted comments.
In addition, each construct is given a Javadoc comment,
which is transferred from its concept definition. These
transfers are currently done using manual cut-and-paste;
however, the next release of BONC will automate this
functionality. For space reasons, we do not show this step
in the transformation here; however, a different example can
be found in our previous paper [5].

D. Refinement of Queries and Commands

After the Java modules have been identified and appro-
priate comments inserted for their queries, commands, and
constraints, the queries and commands refine to method
signatures. Each query or command refines to exactly one
associated method signature, named using the standard Java
method naming convention (e.g., assignPreset); queries
refine to method signatures with non-void return types,
while commands refine to method signatures with void
return types. The parameter and return types of these meth-
ods are chosen exclusively from the set of Java constructs
generated by concept refinement.

We give every method a Javadoc comment, which is
transferred from the concept definition. The @return tag
of a query is exactly the original English query (“What
station are you tuned to?”), and the method description of a
command is exactly the original English command (“Tune
to station the_station!”). We declare all parameters
final; this assists verification by allowing the parameters
to be treated as constants within the method, and also
prevents the common programming error of assigning a new
value to a parameter with the expectation that it will have
an effect outside the scope of the method. We give the

parameters names, using only lowercase letters, numbers,
and underscores, that start with articles (the_station,
a_button) or are indexed with numbers (button_1,
button_2). This systematic naming also helps with veri-
fication, as it indicates when verification conditions refer to
parameters vs. methods vs. instance fields.

We fill in all method bodies with exactly the JML asser-
tion //Q@ assert false;, the Java assertion assert
false;, and, for methods that return values, the Java
statement return null; or a return of an appropriate
default value (such as false for boolean). This initial
method body explicitly signifies that the method has not been
implemented (instead of having intentionally been given an
empty implementation) and is the “bottom” implementation
with respect to refinement. Classes with such methods can
be compiled, and the consistency of their specifications
can be checked by ESC/Java2; a class has an inconsistent
specification if ESC/Java2 can prove that one of its methods
terminates successfully when the method body starts with
an assert false; statement.

Refinement of queries and commands to Java method
signatures is currently done manually; however, the next
release of BONC will automate significant portions of this
refinement.

E. Refinement of Constraints

Once the queries and commands have been translated
into Java method signatures, we add basic method precondi-
tions and postconditions (for example, to ensure that setter
methods correctly modify state based on their parameters)
and translate the constraints into JML specifications such
as class invariants, class temporal constraints, and method
preconditions and postconditions. In addition, we label every
query method with the JML annotation /+Q@ pure =/,
which indicates that the method changes no state. Fig. 2
shows the refinement of one query and one command from
Fig. 1 to Java method signatures and JML specifications.
The text in boldface type is added in this refinement step;
the remainder is the result of the previous refinement step.

Typically, the refinement of a constraint from an English
sentence to one or more JML assertions involves several
steps. These may seem somewhat contrived at first blush;
however, this refinement technique is the one we actually
use in practice, and it quickly becomes second nature to
developers who use our process. Like the refinement of
queries and commands to method signatures, the refinement
of constraints to JML assertions is currently a manual
process; however, the next version of BONC will perform
most of this refinement automatically [26].

The first step is to assign software entities (methods,
classes, etc.) to the nouns in the sentence. Since each noun is
either a concept from the original concept analysis or a basic
noun (like a numeric constant), this requires knowledge of
what software entity each noun has been refined to. Consider



the constraint on our tuner that “A station is an integer
from 200 to 300 inclusive.” The method “station ()”, an
accessor that gives the currently tuned station, is assigned to
the noun “station”. Similarly, the integer constants 200 and
300 are assigned to the nouns “200” and “300”, respectively.

Once the nouns have been replaced by software entities,
the next step is to translate the rest of the English sentence
into a mathematical expression. In this case, after noun sub-
stitution, we have the sentence “station () is an integer
from 200 to 300 inclusive.” We translate this into the
mathematical expression “200 < station () < 300”. We
then further translate this expression into valid JML syntax,
to arrive at the class invariant “200 <= station() &
station() <= 300"

The final step is to add method preconditions and post-
conditions, if required, to methods that are related to the
software entities in the invariant. For example, consider
the method tuneToStation (int the_ station). Its
postcondition, station () == the_station, ensures
that the station has been set properly. Its precondition
must therefore constructed in a way such that the invariant
will never be violated by establishing the postcondition. In
this case, the method parameter the_station must be
restricted to the valid range of stations, namely “200 <=
the_station & the_station <= 300”. Such pre-
conditions can be identified during analysis, found via a
manual mind’s-eye weakest precondition analysis, or gen-
erated using tools like Houdini and Daikon.

Once all the constraints have been refined from English
to JML, we use ESC/Java2 to type check and statically
check the resulting behavioral specifications. Thus, we can
determine whether there are deficiencies in the specifications
before writing any of the executable program code.

F. Implementation

The final step in the process, implementation of executable
code, takes place only after all method signatures and JML
specifications are completed. At this point, the programming
is primarily a “fill-in-the-blanks” exercise to fulfill the
specifications that are already in place. This involves replac-
ing “unimplemented” method bodies with implementations
that fulfill the method specifications, creating appropriate
fields and constructors, and (usually) writing a main ()
method. We typically start by implementing simple queries,
then move on to more complex methods. This strategy
lends itself to incremental correctness; since more complex
methods often depend upon less complex ones, having
correct implementations of the latter makes for easier correct
implementations of the former.

Our naming requirements for methods and method
parameters were discussed above; for static fields we
use the standard Java convention of naming with
CAPS_AND_UNDERSCORES, and for instance fields we
require all names to start with my_ and contain only

lowercase letters, numbers and underscores. These naming
requirements enforce visible distinctions among the names
of methods, static fields, instance fields, method parameters,
and local variables. This has numerous desirable effects,
including completely preventing the hiding of instance fields
by method parameters or local variables.

As fields are created and method bodies are filled in,
static analysis tools can perform correctness checks on the
system even before it is completely implemented. Moreover,
automated tests can be generated and repeatedly run as new
code is added.

G. A Note on Reversibility

An important aspect of our development process is that it
is not strictly linear, despite the fact that we have presented
it as a series of refinement steps. Every one of these steps is
reversible, and it is possible (and often necessary) to revise
the outputs of any step after they are initially generated.
Reversibility means that changes to the artifacts at either end
of a refinement can be propagated to the opposite side of
the refinement. Depending on the situation, such propagation
can happen entirely manually, entirely automatically, or
manually with tool assistance.

For example, one may add a new constraint at the con-
straint refinement step due to new information or new real-
izations about the system; this causes corresponding changes
to the original output of the query/command/constraint gen-
eration step and subsequent steps. Similarly, one may realize
at implementation that a concept is missing from the concept
analysis, that two concepts that were thought be distinct
are actually aspects of the same concept, that inheritance or
containment relationships that should exist do not (or vice
versa), etc. These changes, once made, cause corresponding
changes in the concept analysis.

In order for the outputs of all the refinement steps (that
is, the design documentation and the implementation) to
remain consistent, the tools used in the refinement must
support reversibility. Ideally, this should be transparent; for
example, when using the EiffelStudio® tools for the original
BON development method with Eiffel, a change in the
Eiffel source code of a system is instantly reflected in its
BON specification. The next release of the BONC compiler
will have significant support for this kind of analysis and
automatic translation. Therefore, while reversibility in our
process currently must be handled manually, this will change
soon as new versions of the tools are released.

IV. PROCESS GUIDELINES

We have developed a number of guidelines for our
verification-centric process over the years, focusing on all
the artifacts of software development; we use them in our
own software projects, including those discussed in Sec-
tion V. Many of these guidelines, which originally required

0nhttp://www.eiffel.com/products/studio/
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significant manual enforcement effort, are now automatically
checked by static analysis tools. While these guidelines are
prescriptive and have worked well for us, we realize that
they will not work in all environments and organizations or
for all development efforts.

A. Coding and Documentation Standards

Our development process relies heavily on formal speci-
fications. However, capturing essential aspects of a system’s
design in a clear, concise, precise, declarative fashion is
more pervasive than merely rigorous use of JML. We also
document design decisions, action items, implementation
tradeoffs, and more in code annotations. Our full coding
standard is available in a separate document'' from the
KindSoftware Research Group website.!”> Over the past
decade this standard has been adopted, in part or in full,
by many other research groups and companies. Furthermore,
our code annotations have formal semantics, expressed in a
categorical logic called kind theory [27].

1) Documentation and Source Code Standards: Our cod-
ing standard requires all Java entities—including those that
are not part of the public API—to have Javadoc comments.
We enforce this requirement with Checkstyle. One reason
for this is consistency; having the same requirements for
both “internal” and “external” documentation means less
ambiguity for developers. Another reason is that IDEs can
parse Javadoc comments and display them to developers in
appropriate and useful contexts, even if the comments are
never used to generate external documentation.

Our coding standard also specifies import guidelines,
spacing and bracket placement rules, and method, field,
parameter and variable name requirements, all of which
are enforced by Checkstyle. This is primarily to impose
discipline; we don’t presume to assert that one way of
placing brackets is inherently superior to another, or that
our way of naming instance fields is superior to any other
distinctive way of naming instance fields. Rather, we believe
that it is necessary both to enforce visual consistency in a
code base and to mandate visible distinctions among the
various constructs (static fields, instance fields, etc.).

2) Code Size and Complexity: Most of the tools we
use perform modular checking, but some—due more to
technical than theoretical reasons—act on entire systems.
For example, jmlc takes several minutes on a modern
machine to compile ESC/Java2 (a codebase with around 600
annotated classes and around 150K “raw” LOC). Compiling,
statically checking overly complex methods, and running full
unit tests takes significant time.

Thus, our rules of thumb are that each method should (1)
be no longer than (literally) a hands-width on the screen and
(2) have a cyclomatic complexity [28] of at most 6. These
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rules, which are enforced automatically by Checkstyle and
PMD, directly impact both program design and refinement,
and indirectly impact verification condition generation (and
therefore prover performance and behavior).

B. Continuous Verification and Testing

We strongly encourage developers to continuously per-
form builds, run static checks, and execute unit tests. When
using command-line tools or manually triggered builds, this
means clicking a button or twitching a finger after every few
lines of documentation, specification, or code are written
or modified. Appropriately-configured modern IDEs trigger
the tools automatically. For example, in the configuration
shipped with the Mobius PVE, if all options are enabled, two
compilers and a half dozen static checkers are automatically
run every time a class is saved. The feedback provided by
this continuous verification process allows a developer to
quickly find and fix potential issues before they snowball
into all-night bug hunting or refactoring sessions.

1) Verification vs. Testing: Deciding where to focus ver-
ification effort is critical to successful adoption of formal
methods. Some subsystems simply cannot be verified with
a reasonable amount of effort due to a variety of constraints
(technical, social, and legal). These may include model com-
plexity, rapidly changing requirements that necessitate major
design or code changes (and thus, new specifications and
re-verification), or even a lack of source availability. Other
subsystems cannot be fully tested due to challenges like state
space explosion, which we believe is usually the result of
poor API design or limited use of invariants'3. Static analysis
is exactly what is called for in these subsystems.

In general, our rules are: (1) enable all runtime assertion
checking, so long as it does not increase execution time or
resource utilization beyond reasonable limits; (2) perform
full unit testing on all modules that do not have complex
external state dependencies; (3) perform static checking of
code style, complexity, and common design and program-
ming errors on the entire system; (4) perform lightweight
extended static checking (for null pointer dereferences, in-
valid class casts, array index bounds violations, etc.) on the
entire system; and (5) perform full extended static checking
on critical subsystems.

2) Unit Test Thoroughness: When unit testing in a
verification-centric process, it is not immediately clear how
much testing is “enough”. Attempting to obtain 100% value,
branch, or statement coverage is a rabbit-hole we dare not
crawl down [29].

However, with specification-based testing tools like JML-
JUnit, obtaining 90% coverage of even a large system
typically requires only an afternoon or two of work. Since
the JML-JUnit tests are automatically generated, they can

13We have no hard evidence for this thesis, which represents an excellent
opportunity for future empirical research.
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adapt to changes in requirements and architecture without
developer intervention.

We believe that recent work by ourselves and others on
identifying interesting data values [30] holds a great deal of
promise. A new version of JML-JUnit under development
takes such analyses a significant step forward in the form
of specification-aware, semantically rich reflective unit test
generation.

V. CASE STUDIES

This development process and these tools have been used
in numerous case studies over the past several years, a
number of which have been published in various fora [4],
[31]-[35]. In this section we briefly summarize some of
these. Details about others are available in the cited papers,
and much more information than can be included here
(for space reasons) is available by downloading the actual
software systems.

A. Student Coursework

1) The Eindhoven OOTI Course: A postgraduate course
in applied formal methods has been taught at TU/Eindhoven
for several years. Small teams of students design, implement,
test, and verify medium-sized smart-card-based systems.
Students verify the applet that runs on the smart-card (in
JavaCard [36]) and unit and system test their terminal
software. Example systems include digital wallets, “value
club” point cards, petrol rationing chits, etc.

2) Undergraduate Software Engineering at UCD: The
undergraduate software engineering project courses at Uni-
versity College Dublin use our process starting from the
students’ first year. Students work in small teams on a variety
of software projects. Team sizes, problem complexity, and
program sizes grow as the students mature. Nearly a hundred
different systems have been built over the past three years,
including everything from a Guinness screen saver (in the
first-year course) to new implementations of classic 8-bit
Commodore 64 games like “Space Taxi” (in the third-year
course). All student projects are open source and available
for download from collaborative development environments
hosted at UCD or from the authors.

B. Production Systems

1) ESC/Java2: We use our process in the development
of the ESC/Java2 tool itself, in the belief that we must
actually apply our methods if we intend to recommend
them to others. As a result, ESC/Java2 is a robust and well
tested piece of software. In addition, because ESC/Java2 is a
complex system—comprising around 600 classes for a total
of approximately 150K “raw” LOC—our use of the process
has provided valuable insights about where performance
improvements must be made in the various verification tools.

2) The KOA System: In 2003, the Dutch Parliament
commissioned an Internet-based remote voting system for
use by Dutch expatriates. This system, called KOA, was
constructed by the SoS group at Radboud University Ni-
jmegen. The system was partitioned into three components:
file I/O, graphical I/O, and the “core” data structures and
algorithms. Because of time constraints imposed by the
Dutch government (the system was to be developed and
delivered in only four weeks, with only three developers),
the full verification-centric process was used only on the
core subsystem, though the other subsystems were also given
partial JML specifications. The process yielded a working
system that has been used in an EU Dutch election, along
with a set of nearly 8,000 automatically-generated unit tests
with 100% code coverage and a 100% success rate. There
are no known bugs in this system, and several followup
analyses, both by new research group members and by
external teams (e.g., at MIT), have found no errors in the
specification or implementation of this system.

VI. RELATED WORK

While our language of choice is Java, and our tools of
choice are JML and ESC/Java2, there are a number of other
languages and tools available that can be used to implement
a development process similar to ours. We are unaware,
however, of any work that ties together rigorous object-
oriented software engineering techniques with continuous
verification in as comprehensive a way as we have described.

The Spec# programming system from Microsoft Re-
search [37] includes both an extension to the C# pro-
gramming language that supports contracts (class invariants,
method preconditions and postconditions) and a static pro-
gram verifier. Spec# can be used to apply our development
process to C# applications. However, Spec# does not support
some of the advanced modeling capabilities of JML, and
lacks support for abstracting refinement to requirements.

SPARK-Ada [38] is a safe subset of the Ada programming
language, and a corresponding toolset, designed for develop-
ing high-reliability software. Like JML, formal annotations
in SPARK are written as specially-formatted comments.
The SPARK toolset performs static analysis similar to that
of ESC/Java2, though in a sound fashion. Some of our
development process can be applied to SPARK-Ada sys-
tems; however, because SPARK has minimal support for
the object-oriented constructs of Ada, one must perform
refinement in a data and procedural fashion, targeting Ada
modules rather than classes.

The B method and its associated system, both histor-
ical/commercial [39] and modern/open source [40], also
focus heavily on a refinement-centric approach to software
construction. Our method and process differ from the B
approach in two main ways: first, B does not support
refinement above the level of an abstract machine, and
thus does not abstract refinement to requirements; second,



B focuses on generating program code. In contrast, our
approach focuses on refinement to and from program code,
including code that was written from scratch without regard
to our refinement semantics, methodology, or process.

SpecWare [41] is an automated software development
system that uses rigorous stepwise refinement to transform
abstract system models into concrete applications. Like B,
SpecWare has little support for bidirectional refinement and
no support for refinement to requirements.

VII. CONCLUSION

We have described a complete, verification-centric soft-
ware development process for sequential Java systems based
on the Java Modeling Language and a host of supporting
tools. While we have provided several examples of its
successful application, we have also discussed two unde-
niable factors—tool performance, and the fact that many
of the tools currently do not support all the features of
modern Java—that act to limit its widespread adoption. The
tools are rapidly evolving to address these issues, and we
continually refine the process as we (and others) develop new
verification tools and improve the performance of existing
ones. We are optimistic that we will be able to apply our
process to modern Java systems in the near future.

While many teams that define new concepts and ar-
tifacts for software engineering rarely, if ever, use their
own concepts and artifacts in real systems construction,
we use the verification-centric process described here to
develop our own software systems and we enthusiastically
teach it in our software engineering classes. We believe
that our particular combination of methodology, process,
specification languages, and implementation with broad and
deep tool support represents one of the most widely used,
widely taught, and broadly applied concrete examples of
dependable software development available today.
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