
Toward Instant Gradeification

Daniel M. Zimmerman∗, Joseph R. Kiniry† and Fintan Fairmichael‡

∗University of Washington Tacoma, USA — dmz@acm.org
†IT University of Copenhagen, Denmark — kiniry@acm.org

‡University College Dublin, Ireland — fintan.fairmichael@ucd.ie

Abstract

Providing useful feedback to students about both the functional correctness and the internal
structure of their submissions is the most labor-intensive part of teaching programming courses.
The former can be automated through test scripts and other similar mechanisms; however, the
latter typically requires a detailed inspection of the submitted code. This paper introduces
AutoGradeMe, a tool that automates much (but not all) of the work required to grade the
internal structure of a student submission in the Java programming language. It integrates
with the Eclipse IDE and multiple third-party plug-ins to provide instructors with an easy-to-
use grading environment. More importantly, unlike other automatic grading tools currently in
use, it gives students continuous feedback about their work during the development process.

1. Introduction

Grading student submissions is the most time-consuming, labor-intensive part of teaching
programming courses. Graders must provide useful feedback to students on both external
correctness, the degree to which the submission fulfills its functional requirements, and internal
correctness, the degree to which the submission uses language features in reasonable ways and
has easily understandable code (for some definition of “easily”). Some courses may require
assignments to conform to a particular coding standard, to use algorithms with time or space
complexity within a given threshold, or to use sound object-oriented design principles, all of
which also fall under the umbrella of internal correctness.

External correctness can be evaluated in several ways, ranging from automated testing
for assignments with well-defined I/O patterns or API to manual inspection and interaction
for assignments with complex student-defined graphical user interfaces. This is the more
straightforward (though certainly not easy) part of grading: if the tests pass or the GUI reacts the
way it should the submission is correct; otherwise, it is incorrect to some degree. Evaluating
internal correctness is less straightforward: checking a submission’s style, use of language
features, object-oriented design, and complexity (both algorithmic and code) requires a detailed
source code inspection rather than a brief interaction with a running program.

We present a tool called AutoGradeMe,1 an Eclipse plug-in that automates much of the
grading of internal correctness for object-oriented Java programming assignments. AutoGrade-
Me evaluates programming style, use of language features, and code complexity by using the
output generated by multiple static checkers. In conjunction with the Java Modeling Language
(JML) [1], the ESC/Java2 extended static checker [2], and the BONc BON [3] compiler

1 We originally named the tool AutoGrader; however, we modified the name after discovering that another
Java-based tool of the same name had already been released.

978-1-4577-0347-8/11/$26.00 c© 2011 IEEE CSEE&T 2011, Waikiki, Honolulu, HI, USA

406

and type checker, it can also evaluate the correctness of implementations relative to their
specifications and the consistency of high-level design documentation.

AutoGradeMe does not evaluate algorithmic complexity and has limited ability to detect
object-oriented design issues, so it does not eliminate the need to inspect student code; however,
by automatically checking style, language feature usage, code complexity, and design consis-
tency, it frees the grader to look at the “big picture” of a student submission rather than the
minutia of syntax. More importantly, students receive continuous feedback from AutoGradeMe
about the internal correctness of their code while their software is under construction. This
continuous feedback distinguishes AutoGradeMe from other automated grading tools.

We have used AutoGradeMe in our courses at multiple institutions for over a year. During
that time we have saved considerable grading effort, improved grading consistency, and virtually
eliminated the element of surprise for students with respect to internal correctness grading. In
the remainder of this paper we describe the operational principles and user interface of Auto-
GradeMe, briefly compare it to related systems, and describe our plans for future development.

2. AutoGradeMe and Eclipse

AutoGradeMe relies on the following Eclipse plug-ins to analyze student projects: Metrics,2

a software metric calculator; CheckStyle3 and PMD,4 static checkers for Java source code;
FindBugs,5 a static checker for Java bytecode; BONc,6 a parser and typechecker for BON; and
ESC/Java2,7 an extended static checker for Java.

In early programming courses, we use Metrics, CheckStyle, PMD and FindBugs to statically
check student code; in more advanced courses where students must generate both informal and
formal specifications for their software, we use BONc and ESC/Java2 to check specification
consistency and implementation correctness. We have previously discussed our use of these
plug-ins in software engineering courses [4] and as part of our development process [5].

Most of these plug-ins8 generate Eclipse errors and warnings (hereafter, problems). Eclipse
presents these in its problem reporter, which also reports Java compiler problems and IDE
configuration problems; this can result in long lists of problems ranging from style issues
(spacing, bracket placement, etc.) to code structure issues (unreachable statements, unused
fields, etc.) to syntax errors. These are typically sorted by severity—errors, which indicate
issues that prevent the program from compiling or running, appear at the top of the list and
warnings appear below them—and can also be sorted on other attributes. Even with sorting,
however, long lists of problems can be overwhelming for students and graders alike.

AutoGradeMe uses the Eclipse Platform API to examine the set of problems reported by
each plug-in and distill that set into three letter grades. The first is based solely on the number
of errors, the second is based solely on the number of warnings, and the third, which is used as
the overall grade for the plug-in, is a weighted average of the first two. The grade scale is fully
configurable, with the option to use any subset of letter grades A through G (including + and –
modifiers, except for G), plus additional grades NG, meaning “no grade,” and N/A, meaning
“not applicable” (reported when a plug-in is turned off or its output is unavailable). Grades can

2 http://metrics.sourceforge.net/ and http://metrics2.sourceforge.net/
3 http://checkstyle.sourceforge.net/ and http://eclipse-cs.sourceforge.net/
4 http://pmd.sourceforge.net/
5 http://findbugs.sourceforge.net/
6 http://kindsoftware.com/products/opensource/BONc/
7 http://kindsoftware.com/products/opensource/ESCJava2/
8 Metrics, which provides a separate Eclipse view to examine calculated project metrics, is the only exception.

407

Figure 1. Configuration panel for individual plug-in graders

be individually enabled and disabled and are assigned individual colors and threshold values;
for space reasons, we do not show the interface for this configuration here.

Grade computations are configured separately for each plug-in as shown in Figure 1.9 Letter
grade thresholds are set separately for error and warning grades (as well as method length
and cyclomatic complexity grades); for example, the boundary between an B and a C for
CheckStyle warnings in this project is 20 warnings per KLOC. Each plug-in grader has a
default set of marker IDs that identify the problems it counts; the ability to change the marker
IDs protects AutoGradeMe against future API changes by plug-in designers.

AutoGradeMe also assigns three letter grades for code metrics. The first is for the average
number of lines of code in a method, for which there are generally accepted “good” ranges.
The second is for the average McCabe cyclomatic complexity [6] of methods in the system.
Although the utility of cyclomatic complexity has been criticized [7], we have found it useful
in our courses both because it is easy for students to understand (effectively, the cyclomatic
complexity of a method is the number of execution paths through the method) and because, in
our experience, students (and graders) find code with lower cyclomatic complexity easier to
comprehend. The third is a weighted average of the first two, either of which may be disabled.

Finally, AutoGradeMe uses a weighted average of the grades reported for all the plug-ins
to compute an overall project grade. AutoGradeMe is implemented as an Eclipse builder, so
every time a student triggers a build (e.g., by saving a modified Java source file) AutoGradeMe
recalculates all the grades and updates the AutoGradeMe view. Students may choose to keep the
AutoGradeMe view visible at all times to get continuous feedback on their work, to only consult
the AutoGradeMe view before submission, or (at their own peril) to ignore the AutoGradeMe
view completely. Instructors and graders use the AutoGradeMe view to grade the assignment.
Figure 2 shows the AutoGradeMe view for student projects that received an A (above) and a
B (below) on the automatically graded portions (ESC/Java2 and BONc were both disabled).

9 In the interest of space, we have hidden some configuration options; the options for BONc, ESC/Java2,
FindBugs, and PMD are essentially the same as those for CheckStyle with different marker IDs and display names.

408

Figure 2. AutoGradeMe views for two student submissions

In order to use AutoGradeMe for an assignment, the instructor distributes an Eclipse project
template; typically this takes the form of a .zip file that is imported into Eclipse in one
step. A project template includes configurations for all the plug-ins, enabling the instructor to
create customized settings for each assignment. It also includes the AutoGradeMe configuration
(weights, thresholds, etc.) that will be used when grading the assignment. As long as students
do not tamper with the AutoGradeMe and static checker settings, the AutoGradeMe view they
see when coding will exactly match the AutoGradeMe view the instructor sees when grading.

AutoGradeMe has been publicly available for over a year. It can be easily installed from
our Eclipse update site, and we maintain a publicly-visible issue tracking system for feature
requests, bug reports, etc. The AutoGradeMe web page10 contains links to both.

3. Related Work

Automatic grading has been extensively researched; the earliest published work we have
found dates from 1960, when Hollingsworth [8] reported on the use of an automatic grader with
a punch-card driven IBM 650. Many automatic grading frameworks have been developed since
then, including recent examples such as AutoGrader [9], Web-CAT [10], and Marmoset [11].

We have insufficient space to discuss related work in detail, so we highlight the important
differences between AutoGradeMe and other existing systems. The majority of existing sys-
tems deal only with external correctness aspects of student submissions, a problem that we

10 http://kindsoftware.com/products/opensource/AutoGrader/ – the web page and Eclipse update site both reflected
the original “AutoGrader” name at the time of this writing.

409

have not (yet, see below) addressed with AutoGradeMe. Those that do address some of the
same internal correctness aspects as AutoGradeMe, such as Web-CAT and Marmoset, perform
their internal correctness evaluations after assignment submission rather than providing the
continuous feedback throughout the program development process that AutoGradeMe does.
In addition, no system that we have found addresses the correctness of implementations with
respect to contracts or high-level specifications, as AutoGradeMe does using ESC/Java2 and
BONc respectively.

4. Future Directions

In future versions of AutoGradeMe, we intend to add the ability to automatically evaluate the
outcomes of unit tests written with widely-used Java test automation frameworks. For student
programs that are required to implement a specific API, a grader will then merely run a set of
tests against a student Eclipse project to see how AutoGradeMe evaluates it. We also intend
to add the ability to evaluate student-written unit tests on the basis of code coverage using a
coverage plug-in; while high code coverage is only one characteristic of good unit tests, it is
a tedious one for graders to measure by hand. These new features will allow AutoGradeMe
to grade some external correctness characteristics of student submissions in addition to the
internal correctness characteristics it already grades.

Another area we intend to address is extensibility. Currently, AutoGradeMe is aware of
exactly the six plug-ins we have discussed. In a future version, instructors will be able to add
the output of any Eclipse plug-in that generates problem reports to AutoGradeMe calculations
in a uniform, straightforward way without needing to modify the AutoGradeMe code.

References

[1] L. Burdy et al., “An overview of JML tools and applications,” International Journal on Software
Tools for Technology Transfer, Feb. 2005.

[2] J. R. Kiniry and D. R. Cok, “ESC/Java2: Uniting ESC/Java and JML,” in International Workshop
on the Construction and Analysis of Safe, Secure and Interoperable Smart Devices (CASSIS), 2004.

[3] K. Waldén and J.-M. Nerson, Seamless Object-Oriented Software Architecture—Analysis and
Design of Reliable Systems. Prentice–Hall, Inc., 1995.

[4] J. R. Kiniry and D. M. Zimmerman, “Secret ninja formal methods,” in 15th International
Symposium on Formal Methods (FM), 2008.

[5] D. M. Zimmerman and J. R. Kiniry, “A verification-centric software development process for Java,”
in 9th International Conference on Quality Software (QSIC), 2009.

[6] T. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering, vol. SE-2, no. 4,
pp. 308–320, Dec. 1976.

[7] M. Shepperd, “A critique of cyclomatic complexity as a software metric,” Software Engineering
Journal, vol. 3, no. 2, pp. 30–36, Mar. 1988.

[8] J. Hollingsworth, “Automatic graders for programming classes,” Communications of the ACM,
vol. 3, no. 10, pp. 529–529, Oct. 1960.

[9] M. T. Helmick, “Interface-based programming assignments and automatic grading of Java pro-
grams,” in 12th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (ITICSE), Dundee, Scotland, 2007.

[10] S. H. Edwards, “Teaching software testing: Automatic grading meets test-first coding,” in 18th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), 2003.

[11] J. Spacco et al., “Experiences with Marmoset: Designing and using an advanced submission and
testing system for programming courses,” in 11th Annual Conference on Innovation and Technology
in Computer Science Education (ITICSE), 2006.

410

