
A Vision for Spatial-Reasoning Commodity Robots

Zeke Koziol, Sabreen Lakhani, Anatole Paine, and Zachary Dodds, Harvey Mudd College, Claremont, CA
{zkoiol, slakhani, apaine, dodds}@cs.hmc.edu

Abstract—This work seeks to augment commodity robots to
enable service tasks that require global spatial reasoning,
e.g., delivery, surveillance, and map maintenance. In
addition, we seek to do this as accessibly and inexpensively
as possible. To that end we present a design and three
prototype platforms that illustrate educational, service-
level, and research applications atop the iRobot Create. The
prototypes significantly improve the robotic capabilities
broadly available at the $500 price range, particularly for
pedagogical applications. This work informs a facet of the
design space for next-generation commodity robots. Though
the prototypes' first audience is likely to be educators, we
hope they pique the interest of those who design low-cost
consumer and service robots, as well.

 1. MOTIVATION
The millions of service and entertainment robots in
households demonstrate the remarkable success and solid
foothold of commodity robotics today. The next generation
of ~$250 commodity platforms, we believe, will add the
capability of spatial deliberation to the robustness that
characterizes currently available systems. Maintaining
environmental maps will open up delivery, surveillance, and
other service capabilities to a broad audience.

To investigate the feasibility of low-cost robots that can
reason about more than their local environment, we present
in this work prototype extensions of the iRobot Create [1].
The key design choice is to manage all sensor processing
off-board via wireless router. An ethernet camera and short-
range IR sensors provide excellent data, complementing the
Create's, for map maintenance. Currently the platform uses
provided maps in order to complete point-to-point
navigation tasks, e.g., for pickup and delivery. In addition, it
serves as an accessible basis for research and experiments in
vision-based navigation.

 2. CAPABILITIES AND COMPONENTS
On top of the proprioceptive and actuation capabilities
provided by the Create [1] a suite of six Sharp GP2D12 IR
sensors and an Axis207 ethernet camera send a stream of
data via an off-the-shelf wireless router. Any router will do;

we have used Linksys WRT320N and 546L models. Router-
to-robot control occurs through an Arduino microcontroller
and its accompanying ethernet interface. Voltage regulators
and their heat sinks are the only additional wiring required.
In total, the cost beyond the Create is less than $400: $200
for the camera and $200 for the other components. These
reflect prototype costs; commercial production would yield
substantial savings. Figure 1 shows our integrated platforms
and their components.

Figure 1 - (left) At left is the assembled platform and its
external sensors, six infrared range sensors and an Ethernet
camera. Sensor processing and control is off-board; lag is

not an issue; the limiting factors are the Create's serial
bandwidth and the image-processing time, not data- or

image-transfer costs. (right) With the shelf removed, the
simplicity and robustness of the design is apparent: a power-
distribution circuit of three voltage regulators and a control

interface using an Arduino support the sensors and base.

A second design possibility we have pursued replaces the
router and camera with a netbook computer, following the
lead of CMU's Tekkotsu-on-the-Create [2] and designs for
telepresence by researchers at Southern Illinois University,
Edwardsville. The OS-on-board offers an easy interface to
additional devices, but camera quality and software
development suffer atop a netbook: those conditions will
likely improve in the future.

 3. INTERFACE SOFTWARE

To highlight the capabilities of these platforms, we have
created several interfaces:

(1) a remote-control interface using a game controller
(2) autonomous exploration routines for indoor use
(3) spatial-reasoning software supporting navigation
(4) an OpenCV wrapper for vision-based capabilities

At the low level, the robot presents itself as a network
device to which ASCII strings are passed back and forth.
Although any language can be used, to date we have built a

Python interface that exposes all of the motor and sensory
capabilities except vision. That web-accessible image
stream, 640x480 at 20fps, is available to whatever tools a
developer may wish to use. We use an OpenCV-based
interface written in C++.

Inspired by work at Brown University [4], our first software
interface leverages pygame (www.pygame.org) to provide
direct control of the robot through a Wiimote game
controller. The result is engaging and challenging
interactions appropriate for elementary-school audiences –
and enjoyable for any age!

Figure 2. The resulting platform is seven-year-old-proof.
Inexpensive enough to use in outreach activities, the

software and Wiimote-control allows elementary school
students to navigate the robots using only sensor-provided

data. Racing is popular, too (left)!

As highlighted in Figure 2, we have developed pedagogical
activities that allow young students to experience hands-on
how it is different to "be" a robot. Navigating to a
destination with only the video feed or, more difficult,
following the walls with only the IRs deepens appreciation
of the challenges inherent in bridging sensing and control.
The addition of a Nerf launcher has been a wonderful ice-
breaker, and is equally effective among researchers
attending IJCAI and elementary school children.

Figure 3. Having an OS onboard makes the addition of
peripherals straightforward. Indeed, the actuation itself is a
peripheral. The robots, at home in hallways (left) were also
exhibited at IJCAI '09 (center); in addition, a Nerf missile

launcher can act as a universal ice-breaker (right).

Fast, inexpensive autonomy via IR sensing
The second interface - autonomous exploration - mimics the
Creates' ability to quickly cover a large environment by
wall-following. Using the IRs increases efficiency, however,
leading to an average indoor wall-following speed of 39.1

centimeters per second, including concave and convex
corners. The Create's built-in wall-following behavior runs
at 24.3 cm/sec. As Figures 3 and 4 show, the sensor suite is
well-suited to navigating within indoor environments.

Atop this autonomous exploration, we have added a spatial-
reasoning module. Similar in spirit to the pioneering
platforms of [5] and [6], but at a cost orders of magnitude
lower, the software allows a user to click on a goal location
within the robot's known map. The system then
autonomously plans a path to that goal and executes it.
Figure 4 contrasts the odometric estimate (in purple) and
map-corrected locations (in red along straightaways, green
when turning, and blue upon task completion) of the robot
throughout a short run. This "delivery" capability will be
tested in November 2009's robotics innovation competition
and conference (RICC).

Figure 4. Snapshots from the robot's odometric position
(purple) and actual position through a multi-segment wall-
following task. The walls themselves enable correction of
the robot's location, culminating in a correct estimate of its
pose even though the odometric estimate has long left the

field of view. Color represents task state: red for wall-
following, green for turning corners, and blue at the desired

destination. IR values are also visible. The wall that the
platform believes it is currently following is highlighted in
cyan. The final snapshot shows the actual location of the
robot at the end of this run, very near its estimated pose.

An accessible platform for real-time vision experiments

The fourth interface makes the platform an accessible basis
for open-ended research. An OpenCV interface to the video
stream supports interaction with arbitrary libraries and
external code. We use a combination of Matlab, C++ neural
network libraries, and Python to investigate algorithms for
learning range from monocular vision, following work such
as [7] and [8]. We describe the approach and the results of
this research in the following section.

Obtaining the software

All of this software is available from our public subversion
repository [3]. Please contact the last author with concerns
or follow-up inquiries. Note that other freely available
libraries, such as [9] would allow a natural interface through
popular packages such as Matlab.

 4. RESEARCH APPLICATIONS
Perhaps the greatest potential for this platform design, as it
exists today rather than as a prototype for future
applications, is as a testbed for research and education.
Accessible both in terms of cost and the shallow learning
curve of its software, the Create does not impose any
unwanted layers between researchers and the data collected
onboard.

Background: Range from Texture

Thus, images such as those to the left of Figure 5 stream at
20-30 frames per second back to a host computer, from
which they are accessible, for example, via OpenCV. Seeing
these, we realized that monocular vision offers at least the
promise of an advantageous alternative to laser range-
finding across several axes: cameras are less power-hungry,
less heavy, less bulky, less range-limited, and, perhaps most
importantly, less expensive.

Less is more, however, when it comes to computation.
Extracting range from pixel intensities requires far more
algorithmic and computational lifting than extracting range
from time-of-flight. Usual range-from-vision approaches
use temporal feature correspondence across a monocular
image stream to deduce distance from pixels [12]. This
corpus of work is mature, but it is worth noting that these
techniques are most successful when significant spatial
context is used across the image stream. Large patches of
pixels facilitate accurate and precise correspondence.

Recent approaches have boldly asked, "What can we deduce
from only those patches, and not the correspondence at
all!?" For instance, Hoiem et al.'s Photo pop-out [10]
software and Saxena et al.'s Make3d system [8] yield range
at each of a single image's pixels. Spatial grouping, e.g., into
the edges between ground and vertical planes enable the
compelling visualizations those groups have produced.

Such work has seen robot applications: in [10] Hoiem et al.
show confidence levels in terrain navagability, in [8] Saxena
et al. drive an RC car safely and quickly through rough,
natural terrain. Those projects emphasized machine-learning
contributions over the resulting range accuracy. More
recently, Plagemann, et al., [7] quantified the range
accuracy of the learned mapping from columns of pixels
from omnidirectional images to range. That work used
Gaussian Processes to achieve ~1m precision sufficient to
support off-the-shelf SLAM algorithms under assumptions
common to indoor environments. Such results underscore
the power of range-from-texture approaches, pioneered in
Horswill's Polly [11], and used in many systems since.

Here, we learn indoor range-to-obstacle directly from visual
texture. We contrasted two machine learning approaches,
multilayer perceptrons (MLP) using backpropagation and
restricted Boltzmann machines (RBM) [14].

Figure 5 illustrates how we collected data in order to train
these two learning algorithms.

Figure 5. In contrast to traditional approaches' feature
correspondence and camera calibration, our range-from-

texture approach learns from labeled images to distinguish
the source of 8x8 pixel patches: floor vs. wall. The pink line

is human-labeled ground truth and the yellow squares
indicate patches used to train Although the learning itself is
off-line, the resulting classifier finds groundplane within the

live image stream, as documented in Figure 6.

Architecture
The MLP and RBM both have 64 visible inputs: the raw
pixel values from an 8x8 patch of one of the images. The
MLP had a single output that was reinforced toward 1.0 for
obstacle patches and 0.0 for floor patches. The RBM had
two distinct labels: one for floor and one for obstacles.
RBMs do not output a traditional binary classification
signal; rather, they reconstruct the input using both the
learned models, floor and obstacle. The fidelity of each
reconstruction allows our system to decide which to classify
each patch. In our implementation, we weighted each
component equally with opposite signs. Both networks were
5 layers with 3 20-neuron hidden layers.

Results
The fundamental differences between multilayer
perceptrons and restricted Bolzmann machines are apparent
in Figure 6, below. The MLP carefully hews to the
environment in which the classifier was trained: as a result it
is more accurate in segmenting ground plane from obstacles
in those environments. For example, the MLP segments the
 alternating bicycle wheels and wall segments as well or
better than a human observer can.

Because the RBM seeks parsimony in its constructed
representation of the floor vs. wall patches, it does not
classify known environments as well as the MLP. However,
it generalizes far better when patches very different from
training data appear. In Figure 6, an observer looks into the
camera of the robot: such texture had never appeared in the
training set, and the RBM segments it better than the MLP.

Figure 6. The results of our ground-plane segmentation
based on both multilayer perceptron and restricted

Bolzmann machine networks. The images to the left in each
case have been segmented by an MLP. Those on the right
are segmented by an RBM. The greater precision of the
MLP in familiar environments is evident in the top two

images, whereas and the greater ability of RBMs to
generalize is apparent in the bottom two images: images
containing a person did not appear in the training data.

 5. PERSPECTIVE
We believe that commodity robots are the foundation for a
coming generation of capable autonomous agents. Certainly
start-ups such as Heartland, Willow Garage, and The Droid
Works - among many others - will "change the game" with
novel platforms. Yet this work shows that even modest
resources can augment available hardware to create
accessible and capable systems capable of autonomous
spatial reasoning – and the tasks that build upon it.

 ACKNOWLEDGMENTS
The authors recognize and thank the generous support of
funding from NSF REU #0451293, NSF CCLI #0536173,
The Rose Hills Foundation, and Harvey Mudd College.

 REFERENCES
[1] The iRobot Create Open Interface, from
www.irobot.com/filelibrary/pdfs/hrd/create/C
reate%20Open%20Interface_v2.pdf .

[2] Nickens, Glenn V., Tira-Thompson, Ethan J.,
Humphries, Thorna, and Touretzky, David (2009) An
inexpensive hand-eye system for undergraduate robotics
instruction SIGCSE Bulletin 41(1) ACM Press, pp. 423-427.
Online guide available at chiara-robot.org/Create/ .

[3] Software repository with public access to the interface:
https://svn.cs.hmc.edu/svn/robotics/Summer09
/roombaLib

[4] M. Lapping-Carr, O. Jenkins, D. Grollman,
J. Schwertfeger, and T. Hinkle. (2008) Wiimote interfaces
for lifelong robot learning. In AAAI Symposium on Using AI
to Motivate Greater Participation in Computer Science,
Palo Alto, CA, USA, Mar 2008, AAAI Press, pp. 61-66.

[5] Simmons, Reid G., Goodwin, Richard, Haigh, Karen
Zita, Koenig, Sven, O'Sullivan, Joseph, and Veloso,
Manuela M. (1997) Xavier: experience with a layered robot
architecture SIGART Bulletin 8(1-4) ACM Press, pp. 22-33.

[6] Thrun, Sebastian, Beetz, Michael, Bennewitz, Maren,
Burgard, Wolfram, Creemers, A.B., Dellaert, Frank, Fox,
Dieter, Hahnel, Dirk, Roy, Nicholas, Schulte, Jamieson, and
Schulz, Dirk (2000) Probabilistic Algorithms and the
Interactive Museum Tour-Guide Robot Minerva
International Journal of Robotics Research, 19(11) Sage
Science Press, pp. 972-999.

[7] Plagemann, C., Enres, F., Hess, J., Stachniss, C., and
Burgard, W. (2008) Monocular Range Sensing: A non-
parametric learning approach. Proceedings, ICRA 2008 May
19-23, Pasadena, CA IEEE Press, pp. 929-934.

[8] Saxena, Ashutosh, Chung, Sung H., and Ng, Andrew
(2008) 3-D Depth Reconstruction from a Single Still Image
International Journal of Computer Vision 76(1) Kluwer
Academic Publishers, pp. 53-69.

[9] Esposito, Joel M. and Barton, O. Matlab toolbox for the
iRobot Create, at URL www.usna.edu/Users/weapsys/
esposito/roomba.matlab/ 2008.

[10] Hoiem, D., Efros, A. A., and Hebert, M. Recovering
Surface Layout from an Image. IJCV, Vol. 75(1) Oct. 2007.

[11] Horswill, Ian. Analysis of Adaptation and
Environment. Artificial Intelligence, Vol. 73, pp. 1-30. 1995

[12] Kanade, T., Kanade, B. Y., and Morris, Daniel D.
Factorization methods for structure from motion. Phil.
Trans. of the Royal Society of London, Series A. 356,
pp.1153-1173, 2001.

[13] Rosenblatt, F. The Perceptron: A Probabilistic Model
for Information Storage and Organization in the Brain,
Cornell Aeronautical Laboratory, Psychological Review,
v65, No. 6, pp. 386-408, 1958.

[14] Hinton, G. E. and Brown, A. Spiking Boltzmann
Machines. Advances in Neural Information Processing
Systems 12, MIT Press, Cambridge, MA, 2000.

