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Abstract—This work seeks to augment commodity robots to 
enable service tasks that require global spatial reasoning, 
e.g., delivery, surveillance, and map maintenance. In 
addition, we seek to do this as accessibly and inexpensively 
as possible. To that end we present a design and three 
prototype platforms that illustrate educational, service-
level, and research applications atop the iRobot Create. The 
prototypes significantly improve the robotic capabilities 
broadly available at the $500 price range, particularly for 
pedagogical applications. This work informs a facet of the 
design space for next-generation commodity robots. Though 
the prototypes' first audience is likely to be educators, we 
hope they pique the interest of those who design low-cost 
consumer and service robots, as well. 
 
 
 1. MOTIVATION 
The millions of service and entertainment robots in 
households demonstrate the remarkable success and solid 
foothold of commodity robotics today. The next generation 
of ~$250 commodity platforms, we believe, will add the 
capability of spatial deliberation to the robustness that 
characterizes currently available systems. Maintaining 
environmental maps will open up delivery, surveillance, and 
other service capabilities to a broad audience. 
 
To investigate the feasibility of low-cost robots that can 
reason about more than their local environment, we present 
in this work prototype extensions of the iRobot Create [1]. 
The key design choice is to manage all sensor processing 
off-board via wireless router. An ethernet camera and short-
range IR sensors provide excellent data, complementing the 
Create's, for map maintenance. Currently the platform uses 
provided maps in order to complete point-to-point 
navigation tasks, e.g., for pickup and delivery. In addition, it 
serves as an accessible basis for research and experiments in 
vision-based navigation.  
  
 2. CAPABILITIES AND COMPONENTS 
On top of the proprioceptive and actuation capabilities 
provided by the Create [1] a suite of six Sharp GP2D12 IR 
sensors and an Axis207 ethernet camera send a stream of 
data via an off-the-shelf wireless router. Any router will do; 
 
 
 
 
 
 
 

we have used Linksys WRT320N and 546L models. Router-
to-robot control occurs through an Arduino microcontroller 
and its accompanying ethernet interface. Voltage regulators 
and their heat sinks are the only additional wiring required. 
In total, the cost beyond the Create is less than $400: $200 
for the camera and $200 for the other components. These 
reflect prototype costs; commercial production would yield 
substantial savings. Figure 1 shows our integrated platforms 
and their components. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - (left) At left is the assembled platform and its 
external sensors, six infrared range sensors and an Ethernet 
camera. Sensor processing and control is off-board; lag is 

not an issue; the limiting factors are the Create's serial 
bandwidth and the image-processing time, not data- or 

image-transfer costs. (right) With the shelf removed, the 
simplicity and robustness of the design is apparent: a power-
distribution circuit of three voltage regulators and a control 

interface using an Arduino support the sensors and base. 
 
A second design possibility we have pursued replaces the 
router and camera with a netbook computer, following the 
lead of CMU's Tekkotsu-on-the-Create [2] and designs for 
telepresence by researchers at Southern Illinois University, 
Edwardsville. The OS-on-board offers an easy interface to 
additional devices, but camera quality and software 
development suffer atop a netbook: those conditions will 
likely improve in the future.  
   
 3. INTERFACE SOFTWARE 

To highlight the capabilities of these platforms, we have 
created several interfaces: 
 
(1) a remote-control interface using a game controller  
(2) autonomous exploration routines for indoor use 
(3) spatial-reasoning software supporting navigation 
(4) an OpenCV wrapper for vision-based capabilities 
 
At the low level, the robot presents itself as a network 
device to which ASCII strings are passed back and forth. 
Although any language can be used, to date we have built a 



Python interface that exposes all of the motor and sensory 
capabilities except vision. That web-accessible image 
stream, 640x480 at 20fps, is available to whatever tools a 
developer may wish to use. We use an OpenCV-based 
interface written in C++. 
 
Inspired by work at Brown University [4], our first software 
interface leverages pygame (www.pygame.org) to provide 
direct control of the robot through a Wiimote game 
controller. The result is engaging and challenging 
interactions appropriate for elementary-school audiences – 
and enjoyable for any age!  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The resulting platform is seven-year-old-proof. 
Inexpensive enough to use in outreach activities, the 

software and Wiimote-control allows elementary school 
students to navigate the robots using only sensor-provided 

data. Racing is popular, too (left)! 
 
As highlighted in Figure 2, we have developed pedagogical 
activities that allow young students to experience hands-on 
how it is different to "be" a robot. Navigating to a 
destination with only the video feed or, more difficult, 
following the walls with only the IRs deepens appreciation 
of the challenges inherent in bridging sensing and control. 
The addition of a Nerf launcher has been a wonderful ice-
breaker, and is equally effective among researchers 
attending IJCAI and elementary school children. 
 
 
 
 
 
 
 
 
 

Figure 3. Having an OS onboard makes the addition of 
peripherals straightforward. Indeed, the actuation itself is a 
peripheral. The robots, at home in hallways (left) were also 
exhibited at IJCAI '09 (center); in addition, a Nerf missile 

launcher can act as a universal ice-breaker (right). 
 

Fast, inexpensive autonomy via IR sensing 
The second interface - autonomous exploration - mimics the 
Creates' ability to quickly cover a large environment by 
wall-following. Using the IRs increases efficiency, however, 
leading to an average indoor wall-following speed of 39.1 

centimeters per second, including concave and convex 
corners. The Create's built-in wall-following behavior runs 
at 24.3 cm/sec. As Figures 3 and 4 show, the sensor suite is 
well-suited to navigating within indoor environments. 
 
Atop this autonomous exploration, we have added a spatial-
reasoning module. Similar in spirit to the pioneering 
platforms of [5] and [6], but at a cost orders of magnitude 
lower, the software allows a user to click on a goal location 
within the robot's known map. The system then 
autonomously plans a path to that goal and executes it. 
Figure 4 contrasts the odometric estimate (in purple) and 
map-corrected locations (in red along straightaways, green 
when turning, and blue upon task completion) of the robot 
throughout a short run. This "delivery" capability will be 
tested in November 2009's robotics innovation competition 
and conference (RICC). 
 
 
 
 
 
 
 
 
 
 

Figure 4. Snapshots from the robot's odometric position 
(purple) and actual position through a multi-segment wall-
following task. The walls themselves enable correction of 
the robot's location, culminating in a correct estimate of its 
pose even though the odometric estimate has long left the 

field of view. Color represents task state: red for wall-
following, green for turning corners, and blue at the desired 

destination. IR values are also visible. The wall that the 
platform believes it is currently following is highlighted in 
cyan. The final snapshot shows the actual location of the 
robot at the end of this run, very near its estimated pose. 

 
An accessible platform for real-time vision experiments 
 
The fourth interface makes the platform an accessible basis 
for open-ended research. An OpenCV interface to the video 
stream supports interaction with arbitrary libraries and 
external code. We use a combination of Matlab, C++ neural 
network libraries, and Python to investigate algorithms for 
learning range from monocular vision, following work such 
as [7] and [8]. We describe the approach and the results of 
this research in the following section.  
 
Obtaining the software   
 
All of this software is available from our public subversion 
repository [3]. Please contact the last author with concerns 
or follow-up inquiries. Note that other freely available 
libraries, such as [9] would allow a natural interface through 
popular packages such as Matlab. 



 4. RESEARCH APPLICATIONS 
Perhaps the greatest potential for this platform design, as it 
exists today rather than as a prototype for future 
applications, is as a testbed for research and education. 
Accessible both in terms of cost and the shallow learning 
curve of its software, the Create does not impose any 
unwanted layers between researchers and the data collected 
onboard.  
 
Background: Range from Texture 
 
Thus, images such as those to the left of Figure 5 stream at 
20-30 frames per second back to a host computer, from 
which they are accessible, for example, via OpenCV. Seeing 
these, we realized that monocular vision offers at least the 
promise of an advantageous alternative to laser range-
finding across several axes: cameras are less power-hungry, 
less heavy, less bulky, less range-limited, and, perhaps most 
importantly, less expensive. 
 
Less is more, however, when it comes to computation. 
Extracting range from pixel intensities requires far more 
algorithmic and computational lifting than extracting range 
from time-of-flight. Usual range-from-vision approaches 
use temporal feature correspondence across a monocular 
image stream to deduce distance from pixels [12]. This 
corpus of work is mature, but it is worth noting that these 
techniques are most successful when significant spatial 
context is used across the image stream. Large patches of 
pixels facilitate accurate and precise correspondence. 
 
Recent approaches have boldly asked, "What can we deduce 
from only those patches, and not the correspondence at 
all!?" For instance, Hoiem et al.'s Photo pop-out [10] 
software and Saxena et al.'s Make3d system [8] yield range 
at each of a single image's pixels. Spatial grouping, e.g., into 
the edges between ground and vertical planes enable the 
compelling visualizations those groups have produced.  
 
Such work has seen robot applications: in [10] Hoiem et al. 
show confidence levels in terrain navagability, in [8] Saxena 
et al. drive an RC car safely and quickly through rough, 
natural terrain. Those projects emphasized machine-learning 
contributions over the resulting range accuracy. More 
recently, Plagemann, et al., [7] quantified the range 
accuracy of the learned mapping from columns of pixels 
from omnidirectional images to range. That work used 
Gaussian Processes to achieve ~1m precision sufficient to 
support off-the-shelf SLAM algorithms under assumptions 
common to indoor environments. Such results underscore 
the power of range-from-texture approaches, pioneered in 
Horswill's Polly [11], and used in many systems since. 
 
Here, we learn indoor range-to-obstacle directly from visual 
texture. We contrasted two machine learning approaches, 
multilayer perceptrons (MLP) using backpropagation and 
restricted Boltzmann machines (RBM) [14].  
 

Figure 5 illustrates how we collected data in order to train 
these two learning algorithms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. In contrast to traditional approaches' feature 
correspondence and camera calibration, our range-from-

texture approach learns from labeled images to distinguish 
the source of 8x8 pixel patches: floor vs. wall. The pink line 

is human-labeled ground truth and the yellow squares 
indicate patches used to train Although the learning itself is 
off-line, the resulting classifier finds groundplane within the 

live image stream, as documented in Figure 6. 
 

Architecture 
The MLP and RBM both have 64 visible inputs: the raw 
pixel values from an 8x8 patch of one of the images. The 
MLP had a single output that was reinforced toward 1.0 for 
obstacle patches and 0.0 for floor patches. The RBM had 
two distinct labels: one for floor and one for obstacles. 
RBMs do not output a traditional binary classification 
signal; rather, they reconstruct the input using both the 
learned models, floor and obstacle. The fidelity of each 
reconstruction allows our system to decide which to classify 
each patch. In our implementation, we weighted each 
component equally with opposite signs. Both networks were 
5 layers with 3 20-neuron hidden layers.  
 
Results 
The fundamental differences between multilayer 
perceptrons and restricted Bolzmann machines are apparent 
in Figure 6, below. The MLP carefully hews to the 
environment in which the classifier was trained: as a result it 
is more accurate in segmenting ground plane from obstacles 
in those environments. For example, the MLP segments the 
 alternating bicycle wheels and wall segments as well or 
better than a human observer can. 
 
Because the RBM seeks parsimony in its constructed 
representation of the floor vs. wall patches, it does not 
classify known environments as well as the MLP. However, 
it generalizes far better when patches very different from 
training data appear. In Figure 6, an observer looks into the 
camera of the robot: such texture had never appeared in the 
training set, and the RBM segments it better than the MLP.   
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The results of our ground-plane segmentation 
based on both multilayer perceptron and restricted 

Bolzmann machine networks. The images to the left in each 
case have been segmented by an MLP. Those on the right 
are segmented by an RBM. The greater precision of the 
MLP in familiar environments is evident in the top two 

images, whereas and the greater ability of RBMs to 
generalize is apparent in the bottom two images: images 
containing a person did not appear in the training data. 

 
 5. PERSPECTIVE 
We believe that commodity robots are the foundation for a 
coming generation of capable autonomous agents. Certainly 
start-ups such as Heartland, Willow Garage, and The Droid 
Works - among many others - will "change the game" with 
novel platforms. Yet this work shows that even modest 
resources can augment available hardware to create 
accessible and capable systems capable of autonomous 
spatial reasoning – and the tasks that build upon it. 
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