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We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data.
Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it
handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to
its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma
patients based on protein expression profiles. The tissue array data contained at least three tumor samples
from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle
abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopatho-
logical data or traditional classifications are used a priori. To explore whether the tissue microarray data can be
used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest
clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically
detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The
resulting molecular grouping provides better prediction of survival (logrank P¼ 0.000090) than this classical
pathological grouping (logrank P¼ 0.023). We then sought to extend the class discovery by searching for finer
subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to
low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell
patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that
could not be explained by any clinicopathological variables (demonstration of discovery).
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The identification of cancer classes has traditionally
been based on histomorphology. Recently, DNA
microarrays have been used successfully to auto-
matically discover cancer classes through clustering
of the expression profiles.1 It has been shown that
many tumors can be clustered into clinically
relevant groups based solely on gene expression
(mRNA) profiles.

Tissue microarrays have become a widely used
tool to screen for protein expression patterns in a

large numbers of tumors.2 As the number of
immunohistochemical marker measurements accu-
mulates, it is natural to ask whether tissue micro-
array data (protein abundances) can also be used
for tumor class discovery. Class discovery in this
context entails two challenges: (a) developing algo-
rithms to cluster tumors based on tissue microarray
data and (b) determining whether putative classes
(clusters) produced by such algorithms are biologi-
cally and clinically meaningful.

Most clustering algorithms require as input a
dissimilarity measure between tumor samples. We
find that dissimilarity measures that work well for
DNA microarrays are not optimal for tissue micro-
arrays. There is no reason why they should be:
DNA microarray gene expression values are con-
tinuous and have a symmetric distribution, while
tissue microarray tumor marker expressions are
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semicontinuous and often highly skewed (supple-
ment, Fig. Supp1). In this paper, we pioneer the use
of the random forest dissimilarity measure3,4 for the
cluster analysis of a renal cell carcinoma tissue
microarray data. In the supplement, we show
empirically that the random forest dissimilarity is
superior to standard dissimilarities used for DNA
microarray data.

Renal cell carcinoma, the most common type of
kidney cancer in adults, is the 14th leading cause of
cancer mortality in the United States. There are five
main types of renal cell carcinoma with clear cell
being the most common form (70–80%).5

There are a number of reports on protein level
tumor markers in renal cell carcinoma using tissue
microarrays. However, all of these studies analyze
less than four markers.6–11 In this study, we
examined a total of eight tumor markers which were
reported previously to be involved in the natural
history and progression of renal cell carcinoma. To
the best of our knowledge, this is the first cluster
analysis of renal cell carcinoma patients based on
tissue microarray data. The eight markers explore
different molecular aspects: tumor proliferation, cell
cycle abnormalities, cell mobility, and the hypoxia
pathway. Both of the nuclear antigens, Ki67, and
p53, a tumor suppressor, are related to cellular
proliferation. In renal cell carcinoma, both of them
have been shown to be independent predictors
of survival.12 Gelsolin, EpCAM and vimentin
may be involved in cell motility and cancer
progression. Gelsolin, a member of the actin-binding
protein family, has been described as a highly
significant indicator of poor prognosis in non-
small-cell lung cancer.13 EpCAM (epithelial cell
adhesion molecule) is widely expressed on the
surface of many carcinomas.14,15 Vimentin, an inter-
mediate filament, has previously been identified as
an independent predictor of poor prognosis in renal
cell carcinoma.16,17 CA9 and CA12 are members of
the carbonic anhydrase family and are critical
components of the hypoxia pathway. Decreased
expression of CA9 has been shown to predict worse
survival.18 PTEN (phosphatase and tensin homo-
logue deleted from chromosome 10) is a tumor
suppressor gene that regulates cellular migration,
proliferation and apoptosis.19 Although PTEN muta-
tion may be a rare event in renal cell carcinoma,20,21

PTEN deletion has been shown to correlate with
poor prognosis.21

Our hypothesis was that by analyzing these
markers simultaneously, one might be able to (re-
)discover biologically and clinically meaningful
groups of patients. It is worth emphasizing that
random forest clustering is an unsupervised learn-
ing method, which aims to find molecular classifi-
cations with distinct global expression profiles
blinded to clinicopathologic covariates. If the pri-
mary goal is to use tumor markers for prediction
purposes, a supervised learning approach should
be used.

Materials and methods

Patients

The tissue samples were collected from a cohort of
366 patients who underwent a radical or partial
nephrectomy for renal cell carcinoma at UCLA
between 1989 and 2000. The mean age of the
patients is 60 years and the male to female ratio is
approximately 2:1. Following study protocol (KCP
99–233) approval by the UCLA Institutional Review
Board, immunohistochemical studies were per-
formed and clinical data from an established kidney
cancer database were reviewed. The tumor samples
were histologically subtyped according to the
recommendations of the International Union
Against Cancer and patients were staged according
to the TNM classification.22 Tumor grade was
categorized using Fuhrman grade.23 Performance
status was determined using the Eastern Coopera-
tive Oncology Group Performance Score (ECOG-PS)
scale.24 The primary outcome of interest was
disease-specific survival. All the pathology covari-
ates are summarized in Table 1.

Tissue Array Construction and
Immunohistochemistry

A tissue microarray of these 366 renal cell carci-
noma patients was constructed and immunohisto-
chemical staining was performed as previously
described.25 Immunostaining was scored by record-
ing the total percentage of tumor cells staining. As
discussed below, the same staining score was used
for each tumor marker to ensure unbiased results.
The arrays contained at least three cores of tumor
sample per patient and we arrived at a summary
score per patient by forming the mean value. As
shown in the frequency plots in Fig. Supp1, the
percentage of cells staining of the eight tumor
markers are highly skewed, semicontinuous and
non-normal.

Statistical Methods

Our analyses of the data involve the following
three general steps: (1) using random forest
clustering to group the patients based only on
their tumor marker expression profiles; (2) assess
the differences between the resultant clusters in
terms of their survival distributions and other
clinicopathological variables, such as stage, grade
etc.; (3) examine the difference in tumor marker
expression between the clusters. The statistical
methods used in the analyses are described
below.

Random forest clustering
One major input of a clustering analysis is the
dissimilarity measure.26 We propose to use a random
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Table 1 Patient distribution and summary of survival information for each cluster. P-values next to the cross tabulations are Kruskal–Wallis P-values, while for survival difference are
log-rank P-values. ‘NA’ means that the P-values cannot be calculated. Integers denote number of patients and percentages are row percentages

Total no. All patients Clear cell patients Clear cell grade 2 patients Clear cell grade 3 patients
366 307 144 109

Cluster 1 2 1 2 1 2 1 2
No. of patients 327 (89%) 39 (11%) 248 (81%) 59 (19%) 106 (74%) 38 (26%) 45 (41%) 64 (59%)

TNM stage
I 111 88 (79%) 23 (21%) 79 72 (91%) 7 (9%) 41 30 (73%) 11 (27%) 11 7 (64%) 4 (36%)
II 25 19 (76%) 6 (24%) 19 15 (79%) 4 (21%) 12 9 (75%) 3 (25%) 5 2 (40%) 3 (60%)
III 59 55 (93%) 4 (7%) 53 46 (87%) 7 (13%) 27 21 (78%) 6 (22%) 17 10 (59%) 7 (41%)
IV 167 162 (97%) 5 (3%) P¼ 8.05e�07 153 113 (74%) 40 (26%) P¼ 0.00129 63 45 (71%) 18 (29%) P¼0.787 75 26 (35%) 49 (65%) P¼0.028

Grade
1 47 37 (79%) 10 (21%) 35 34 (97%) 1 (3%) 0 0 (NA) 0 (NA) 0 0 (NA) 0 (NA)
2 177 155 (88%) 22 (12%) 144 125 (87%) 19 (13%) 144 106 (74%) 38 (26%) 0 0 (NA) 0 (NA)
3 122 116 (95%) 6 (5%) 109 79 (73%) 30 (28%) 0 0 (NA) 0 (NA) 109 45 (41%) 64 (59%)
4 13 13 (100%) 0 (0%) P¼0.000624 13 4 (31%) 9 (69%) P¼ 2.74e�07 0 0 (NA) 0 (NA) P¼NA 0 0 (NA) 0 (NA) P¼NA

Metastatic
No 195 161 (83%) 34 (17%) 151 133 (88%) 18 (12%) 82 61 (74%) 21 (26%) 33 19 (58%) 14 (42%)
Yes 163 159 (98%) 4 (3%) P¼ 4.73e�06 149 110 (74%) 39 (26%) P¼ 0.00168 61 44 (72%) 17 (28%) P¼0.763 71 22 (31%) 49 (69%) P¼0.0102

ECOG
0 141 115 (82%) 26 (18%) 105 96 (91%) 9 (9%) 56 43 (77%) 13 (23%) 28 18 (64%) 10 (36%)
1 205 194 (95%) 11 (5%) 185 139 (75%) 46 (25%) 82 59 (72%) 23 (28%) 75 26 (35%) 49 (65%)
Z2 16 14 (88%) 2 (12%) P¼0.000622 13 9 (69%) 4 (31%) P¼0.000478 5 3 (60%) 2 (40%) P¼0.405 6 1 (17%) 5 (83%) P¼ 0.00296

Clear cell
No 50 20 (40%) 30 (60%) 0 0 (NA) 0 (NA) 0 0 (NA) 0 (NA) 0 0 (NA) 0 (NA)
Yes 316 307 (97%) 9 (3%) P¼5.5e�34 307 248 (81%) 59 (19%) P¼NA 144 106 (74%) 38 (26%) P¼NA 109 45 (41%) 64 (59%) P¼NA

Survival
No. of patients 321 39 244 58 105 37 45 64
No. of death 155 6 102 44 38 22 20 50
Median survival 4.0 412 5.6 1.2 412 2.7 5.1 1.4
95% CI (lower) 2.9 412 4.1 0.7 4.0 1.8 2.7 0.7
95% CI (upper) 5.3 412 P¼ 9.03e�05 412 2.3 P¼ 4.82e�09 412 5.6 P¼0.0353 412 2.3 P¼0.0022
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forest dissimilarity for tissue microarray data since it
has the following theoretical advantages.4 First,
the clustering results do not change when one
or more covariates are monotonically transformed
since the dissimilarity only depends on the feature
ranks. Thus, one does not need to worry about
symmetrizing skewed covariate distributions.
Second, the random forest dissimilarity weighs
the contributions of each covariate on the dis-
similarity in a natural way: the more related the
covariate is to other covariates, for example the more
correlated a protein marker is with other markers,
the more it will affect the definition of the ran-
dom forest dissimilarity. Third, the random
forest dissimilarity does not require the user to
specify threshold values for dichotomizing tumor
expressions. Since the random forest dissimilarity
is based on individual tree predictors, which
dichotomize the expression values as part of their
construction, the random forest dissimilarity
automatically dichotomizes the expressions in a
principled, data-driven way. Fourth, the random
forest dissimilarity naturally accommodates miss-
ing values. For a technical description of the
random forest dissimilarity consult the supple-
ment, Breiman,3 Shi and Horvath4 and a technical
report that can be downloaded from http://
www.genetics.ucla.edu/labs/horvath/publications/
RFclusteringShiHorvath.pdf.

The random forest clustering procedure is
carried out as follows. The random forest dissim-
ilarity is used to represent each patient as a point in
a two-dimensional space with the aid of multi-
dimensional scaling. The distances between the
points are used in partitioning around medoids
clustering.26 The number of clusters is chosen by
using the partitioning around medoids silhouette
plots and inspecting corresponding multidimen-
sional scaling plots.

Computer code and a tutorial that implements
random forest clustering in R language (http://
www.r-project.org/)27 can be obtained from the
following web page: http://www.genetics.ucla.edu/
labs/horvath/kidneypaper/RCC.htm.

Other statistical methods
We used several methods for describing the
clusters in terms of clinical variables and tumor
marker expressions. To test whether variables
differed across groups, we used the Kruskal–
Wallis test, which is a nonparametric multi-
group comparison test. To visualize the survival
distributions, we used Kaplan–Meier plots. Log-
rank tests were used to test the difference
between survival distributions. All P-values were
two-sided and Po0.05 was considered significant.
All statistical analyses were carried out with
the freely available software R (http://www.
r-project.org/).27

Results

Clustering All Renal Cell Carcinoma Patients

To explore whether the tissue microarray data can be
used to identify fundamental subtypes of renal cell
carcinoma patients, we first carried out random
forest clustering of all patients using the staining
scores (percent of cells staining) of the eight tumor
markers. The patients are depicted as points in two-
dimensional multidimensional scaling plots. The
distances between the data points reflect the random
forest dissimilarities between them. Partitioning
around medoids clustering grouped the points
(patients) into two clusters with 327 and 39 patients
each (Figure 1a).

We related the resultant clusters to commonly
used clinicopathological covariates: TNM stage,
grade, metastatic status, ECOG (health performance
status), renal cell carcinoma subtypes and survival.
We find that 97% of the clear cell patients, a
renal cell carcinoma subtype known to have a
relatively poor prognosis,28 are in cluster 1, while
60% of the non-clear cell patients are in cluster 2
(Table 1). This difference is highly significant
(P¼ 5.5e�34¼ 5.5� 10�34). This suggests that the
clear cell/non-clear cell distinction could have been
automatically discovered on the basis of the tumor
marker data without previous biological knowledge.
We also find that other clinicopathological covari-
ates differ across clusters: TNM stage (P¼ 8.05e�7),
metastasis status (P¼ 4.73e�6), ECOG (P¼
0.000622) and grade (P¼ 0.000624) (Table 1). The
survival distributions of the patients corresponding
to the two clusters are significantly different
(P¼ 9.03e�5, Figure 1b). The patients in clusters 1
and 2 have median survival times of 4 and more
than 12 years, respectively. The fact that the patients
can be grouped into clinically meaningful clusters
based only on their tumor marker expression
profiles provides indirect empirical evidence that
random forest clustering might be a valuable tool for
tissue microarray data analysis. In the supplement,
we compare random clustering to other widely used
clustering methods.

Because we found our strongest cluster associa-
tion with renal cell carcinoma histology class, it is
natural to ask whether the molecular grouping
provides better prediction of survival than this
classical pathological grouping. When comparing
the survival profile of cluster 1 patients to that of
cluster 2 patients, we find a highly significant
difference (P¼ 9.03e�5), while we find a less
significant difference between clear cell and non-
clear cell patients (P¼ 0.0229) (Fig. Supp2). This
suggests that, while the molecular grouping tends to
delineate clear cell from non-clear cell patients, it
provides additional predictive power through asso-
ciations with other clinicopathological variables and
potentially through molecular pathways with no
clear association with the variables in our study.
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The new molecular grouping of the patients can
also be used to find certain patient samples, called
here ‘irregular’, that display unexpected molecular
profiles. We refer to the clear cell status determined
histologically by a pathologist as morphological
clear cell status. The clear cell patients in clusters
1 are referred to as ‘regular’ because the cluster tends
to be enriched for these patients and those in cluster
2 as ‘irregular’ clear cell patients because that cluster

is enriched with non-clear cell patients. In Figure
1c, we plot the Kaplan–Meier estimates of the
survivorship functions of the 307 regular, the nine
irregular clear cell-, and the 50 non-clear cell
patients. The irregular clear cell patients have a
distinct survival advantage over regular clear cell
patients (P¼ 0.025), though the significance is less
compared to the survival of non-clear cell patients
(P¼ 0.22) (Figure 1c), which may be due to the low

Figure 1 (a) The 366 renal cell carcinoma patients are visualized using a multidimensional scaling plot based on the random forest
dissimilarity. Patients are colored by their cluster membership (black for cluster 1 and red for cluster 2) and labeled by tumor subtypes
(‘C’ for clear cell and ‘N’ for non-clear cell patients). (b) Kaplan–Meier plots show that patients in the two clusters have very different
survival distributions. The curves are colored in the same way as in (a). (c) Kaplan–Meier plots for non-clear cell patients (blue), regular
clear cell patients (pink) and irregular clear cell patients (cyan). (d) For each tumor marker, we report the mean expression value in each
cluster. The error bars show 95% confidence intervals. The lines are colored in the same way as in (a). For box-plots and P-values refer to
Fig. Supp2 in the supplement.
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sample size. After revisiting the pathology reports,
we found that the nine irregular samples came
mainly from low-grade (grade o3, nine out of nine),
low-stage (stage o3, six out of nine) and nonmeta-
static (eight out of nine) patients. When we compare
them to the remaining 77 low risk (low-grade, low-
stage, and nonmetastatic) clear cell patients, we find
that both groups have similar survival distributions
(Fig. Supp3). However, the tumor marker expression
profiles of the two low-risk groups differ: the nine
renal cell carcinoma irregular patients have very low
CA9 and Vimentin expression but high Gelsolin
expression (Fig. Supp4). When visualizing the nine
plus 77 low-risk patients in a multidimensional
scaling plot, we find that the nine irregular patients
all cluster together (Fig. Supp5). This shows that
patient groups with distinctly different molecular
profiles may, however, share similar clinicopatho-
logic groupings and outcomes. The utility of mole-
cular classifications in these instances is currently
unclear, but speaks to truly different patient popula-
tions that otherwise would not be identified.

Next, we examined the tumor marker expression
across the two clusters in Figure 1a. In Figure 1d, we
plot the mean expression value of each tumor
marker for the different clusters. We find that CA9
and CA12 have significantly higher expression in
cluster 1 patients than in cluster 2 patients, while
Gelsolin and EpCAM have significantly lower
expression. We find that CA9, Gelsolin, EpCAM
and CA12, are most important for distinguishing the
two clusters of patients (corresponding box-plots
and Kruskal–Wallis P-values can be found in the
supplement, Fig. Supp6).

Clustering Regular Clear Cell Patients

We then sought to extend the class discovery by
searching for finer subclasses of the 307 regular clear
cell patients identified in the previous section.
Using random forest clustering, we grouped the
307 patients into two clusters with 248 patients in
cluster 1 and 59 patients in cluster 2 (Table 1 and
Figure 2a).

When testing whether clinical covariates differed
between the two clusters, we find that grade
(P¼ 2.74e�7), ECOG (P¼ 0.000478), TNM stage
(P¼ 0.00129), and metastatic status (P¼ 0.00168)
are all significantly different with grade being the
most significant (Table 1). We find that 64% of
cluster 1 patients but only 34% of cluster 2 patients
have a low grade. This suggests that the class
discovery approach automatically discovered the
distinction between high- and low-grade patients
independent of prior biological knowledge.
When comparing the survival of cluster 1 patients
to that of cluster 2 patients, we find a highly
significant difference (P¼ 4.82e�9), with cluster 1
patients showing a survival advantage. The median
survival times of cluster 1 and 2 patients are 5.6 and

1.2 years, respectively. Since the resultant clusters
were most highly associated with tumor grade, we
compared that variable to our cluster results. We
find a slightly less significant survival difference
between low- and high-grade patients (P¼ 2.6e�7;
the median survival times of the low-grade and
high-grade patients are 412 and 2 years, respec-
tively). The corresponding Kaplan–Meier plots can
be found in the supplement, Fig. Supp7. As in our
first analysis above, we isolated individual
tumors that were placed in an unexpected cluster
due to their variant molecular profile, calling them
again ‘irregular’. Therefore, we refer to low-grade
patients in clusters 1 and 2 as regular and irregular
low-grade patients, respectively. In Figure 2c, we
plot the Kaplan–Meier estimates of the survivorship
functions of the 159 regular, the 20 irregular low-
grade, and the 122 high-grade patients. The 20
irregular low-grade clear cell patients have a
significantly worse survival profile than the 159
regular low-grade clear cell patients (P¼ 2.85e�6;
the median survival times of the irregular and
regular low-grade patients are 2.3 and 412 years,
respectively; Figure 2c). We find that 70% of the
20 irregular low-grade clear cell patients are high-
stage (group stage 42) patients, while only 55% of
the 159 regular low-grade clear cell patients are
high-stage patients. This significant difference in
stage (P¼ 0.045) may explain the difference in
survival between regular and irregular low-grade
clear cell patients, especially since none of the
other clinicopathological covariates are significant.
When comparing the 20 irregular low-grade
patients to the 87 similar high-stage low-grade
patients, we find that their survival profiles are still
significantly different (P¼ 0.018, Fig. Supp8).
Therefore, the molecular profile distinguished
a low-grade group with poor survival, whose
survival is partially explained by enrichment of
high-stage cases but other undiscovered mechan-
isms may be at work.

When examining the tumor marker expressions,
we find that all tumor markers except EpCAM differ
significantly across the two clusters (corresponding
boxplots and P-values can be found in the supple-
ment, Fig. Supp9). In particular, CA9 and CA12
have lower, and Gelsolin higher, expression in
cluster 2 than in cluster 1 (Figure 2d).

We also clustered the 50 non-clear cell patients,
but we did not find meaningful clusters, which may
be due to the small sample size.

Analysis of the Regular Clear Cell Patients with a
Fixed Grade

After observing that random forest clustering was
able to detect clinically meaningful clusters, we
aimed to detect clusters that could not be explained
in terms of tumor morphology-based covariates,
such as tumor type and grade. Therefore, we
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analyzed clear cell patients with a fixed grade. The
clear cell patients were comprised of 35 grade-1, 144
grade-2, 109 grade-3, and 13 grade-4 patients.

Random forest clustering groups the 144 grade 2
patients into two clusters (Figure 3a). We find that
patients in the two clusters have significantly
different survival profiles (P¼ 0.035; median survi-
val times for the cluster 1 and 2 patients are 412
and 2.7 years, respectively; Figure 3c). Interestingly,
none of the clinicopathological covariates differs
significantly across the two clusters even though
there are relatively many patients in each cluster

(106 and 38 in clusters 1 and 2, respectively; Table
1). The existence of the two distinct tumor marker
expression patterns for grade-2 patients points to
tumor marker expression heterogeneity in these
patients. When examining the tumor marker expres-
sion across the two clusters, we find that CA9 has a
significantly higher and Gelsolin a significantly
lower expression in cluster 1 patients than in cluster
2 patients (Figure 3e and Fig. Supp10). This suggests
that, even within tightly confined morphologi-
cal classifications, random forest clustering can be
used to uncover novel tumor subtypes based on

Figure 2 (a) The 307 regular clear cell renal cell carcinoma patients are visualized using a multidimensional scaling plot based on the
random forest dissimilarity. Patients are colored by their cluster membership (black for cluster 1 and red for cluster 2) and labeled by
their histological grade (‘L’ for low- and ‘H’ for high-grade patients). (b) Kaplan–Meier plots show that patients in the two clusters have
very different survival distributions. The curves are colored as in (a). (c) Kaplan–Meier plots for the high grade clear cell patients (blue),
regular low-grade clear cell patients (pink) and irregular low grade clear cell patients (cyan). (d) For each tumor marker, we report the
mean expression value in each cluster. The error bars show 95% confidence intervals. The lines are colored in the same way as in (a). Box
plots and P-values refer can be found in Fig. Supp4 of the supplement.
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expression profiles, but this result should be
replicated in independent data sets.

Random forest clustering groups the 109 grade-3
patients into two clusters (Figure 3b). We find that
cluster 2 is significantly enriched with high stage
(P¼ 0.028), high ECOG (P¼ 0.0030), and metatstatic
patients (P¼ 0.010) (Table 1). As can be expected,
cluster 2 patients have lower median survival (1.4
years) than cluster 1 patients (5.1 years) (Figure 3d).
The survival difference based on the molecular
grouping (P¼ 0.0022) was comparable to that seen
in the pathology grouping based on ECOG
(P¼ 0.0021, 0 vs 40 ECOG), but was less significant
than the pathology grouping based on metastatic
status (P¼ 3.34e�6) and stage (P¼ 0.00077, high vs
low stage). When examining the expression profiles
of the eight tumor markers across the two clusters
(Figure 3f), we find that the two clusters are most
distinguished by the expression profiles of CA9 and
EpCAM. Both markers are highly expressed in
cluster 1 (P-values and box plots can be found in
the supplement, Fig. Supp11).

We also clustered the 35 grade-1 and the 13 grade-
4 patients (supplement, Figs. Supp12–14) but did
not identify meaningful clusters, which may be due
to small sample sizes.

Discussion

We show that tissue microarray data-based class
discovery techniques can be used to identify funda-
mental subtypes of cancer. To the best of our
knowledge, this is the first unsupervised analysis
of renal cell carcinoma tumors based on protein
expression data. A comparison of unsupervised and
supervised results can be found in the supplement.

Tissue microarrays are a tumor marker validation
technique that aims to validate relatively few tumor
markers on many tumor samples. In contrast, DNA
microarrays and proteomics assays probe many
genes on relatively few samples. Thus, these
techniques are complementary and address different
research aims. The main road for identifying tumor
classes will be to probe many (thousands of) genes
using DNA microarrays and proteomics assays since
more genes means more information. But this paper
provides evidence that a less traveled, a less obvious
road, can also lead to the discovery of tumor classes.
We show that tumor marker validation data can be
used to find tumor classes, especially if powerful
data mining methods are used. In the supplement,

we provide some empirical evidence that random
forest clustering outperforms other standard cluster-
ing approaches used for DNA microarrays.

While unsupervised analyses have not been used
to analyze protein expression data in renal cell
carcinoma, several unsupervised analyses of renal
cell carcinoma samples based on mRNA expression
data have been reported in the literature.29–32 It is
interesting that the eight tumor markers in our study
yield results that are consistent with those found by
using thousands of mRNA level gene expression
values. In particular, using different clustering
methods, all of the DNA microarray studies observe
distinct global gene expression signatures associated
with clear cell- and non-clear cell renal cell
carcinomas. In addition, our results coincide with
the findings of Takahashi et al29,30 that (a) there are
two subgroups of clear cell renal cell carcinoma
with significantly different survival outcomes, and
(b) that the low-risk (better surviving) group con-
tains more low-grade patients that the high-risk
group.

In this study, we measured the tumor marker
expressions by the percent of positively staining
cells. This staining score is a continuous, undicho-
tomized variable, ranging from 0 to 100%. It is
standard practice in supervised analyses to dicho-
tomize tumor marker expressions for ease of inter-
pretation and reproducibility. But, we caution
against using external threshold values for dicho-
tomizing expressions in unsupervised analyses
since continuous variables may contain additional
predictive information when compared to dicho-
tomized variables. In addition, using undichoto-
mized staining scores may be particularly relevant
in the future when semiautomated or automated
methods for assessing staining scores become avail-
able. To allow for comparisons across institutions,
standardized tumor marker staining and scoring
protocols should be established.

The fact that the random forest method was able
to create clinically well defined, meaningful
classes using the molecular signature of only eight
protein-level markers provides indirect evidence
that the method works well on real data; the main
groupings generated were frequently associated
with strongly predictive conventional variables,
such as tumor subtype and grade. Using the
method we were able to discover novel molecularly
defined patient groups that might not have been
isolated using traditional clinicopathological data.
These novel subtypes of cancer will need to be

Figure 3 Multi-dimensional scaling plots (top), Kaplan–Meier curves (middle) and parallel coordinate plots (bottom) of tumor marker
expression in each cluster of the grade 2 (left, a, c and e) and grade 3 (right, b, d and f) patients. (a) Multi-dimensional scaling plot of the
144 grade 2 clear cell patients. Patients are labeled and colored by their cluster membership. (b) Multidimensional scaling plot of the 109
grade 3 clear cell patients. Patients are colored by their cluster membership (black for cluster 1 and red for cluster 2) and labeled by their
metastatic status (‘L’ for localized and ‘M’ for metastatic patients). (c, d) Kaplan–Meier curves by cluster for grade 2 and grade 3 patients,
respectively. The curves are colored in the same way as in (a) and (b). (e, f) For each tumor marker, we report the mean expression value
in each cluster. The error bars show 95% confidence intervals. The lines are colored in the same way as before. Box plots and P-values
can be found in Fig. Supp5 and Fig. Supp6 of the supplement.
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validated across different institutions and techno-
logical platforms.
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