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ABSTRACT

Skin detection is used in applications ranging from face de-

tection, tracking body parts and hand gesture analysis, to

retrieval and blocking objectionable content. For robust skin

segmentation and detection, we investigate color classifica-

tion based on random forest. A random forest is a statistical

framework with a very high generalization accuracy and

quick training times. The random forest approach is used

with the IHLS color space for raw pixel based skin detection.

We evaluate random forest based skin detection and com-

pare it to Bayesian network, Multilayer Perceptron, SVM,

AdaBoost, Naive Bayes and RBF network. Results on a

database of 8991 images with manually annotated pixel-level

ground truth show that with the IHLS color space, the random

forest approach outperforms other approaches. We also show

the effect of increasing the number of trees grown for random

forest. With fewer trees we get faster training times and with

10 trees we get the highest F-score.

1. INTRODUCTION

Skin detection has a wide range of applications both in human

computer interaction and content based analysis. Applica-

tions such as: detecting and tracking of human body parts [1],

face detection [2], naked people detection, people retrieval

in multimedia databases [3] and blocking objectionable con-

tent [4], all benefit from skin detection.

The most attractive properties of color based skin detec-

tion are: potentially high processing speed, invariance against

rotation, partial occlusion and pose change. However, stan-

dard skin color detection techniques are affected by changing

lighting conditions, complex backgrounds and surfaces hav-

ing skin-like colors.

The approaches to classify skin in images can be grouped

into three types: parametric, non-parametric and explicit skin

cluster definition methods. The parametric models use a

Gaussian color distribution whereas non-parametric methods

estimate the skin-color from the histogram obtained from

training data [5].

Skin clustering explicitly defines the boundaries of skin in

a given color space, generally termed static skin filters. The

main drawback of skin clustering is a high number of false

detections. Khan et al. [6] addressed this problem by adapting

the skin-color model according to reliably detected faces. On

large databases the adaptive approach makes large scale video

classification feasible [4].

Color is a low level feature that is computationally in-

expensive [7]. Perceptually uniform color spaces like the

CIELAB and CIELUV are used for skin detection e.g. by

[2]. Orthogonal color spaces like YCbCr, YCgCr, YIQ, YUV,

YES try to form as independent components as possible.

Neural networks [8], Bayesian Networks e.g. [9], Gaus-

sian classifiers e.g. [5], and self organizing maps [7] have

been used to try to increase the classification accuracy.

Random forest is an ensemble classifier having a quick

training phase and a very high generalization accuracy [10,

11, 12]. It is successfully used in image classification [13],

image matching [14], segmentation [15] and gesture recogni-

tion [16].

We use random forest approach for skin segmentation.

We model the skin classification problem in the IHLS color

space [17]. We find that the random forest approach has high

accuracy for raw pixel based skin segmentation. We evaluate

the random forest approach in the IHLS color space and com-

pare it to Bayesian network, Multilayer Perceptron, SVM,

AdaBoost, Naive Bayes, and RBF network. Results on a

database of 8991 images with manually annotated pixel-level

ground truth show that in the IHLS color space, random forest

approach outperforms other approaches.

Section 2, explains random forest and the generalization

error. Experimental details and the data set used are given in

Section 3. Section 4 concludes.

2. RANDOM FOREST

The popularity of tree classifiers is their intuitive appeal and

easy training procedures. However there is no classical de-

cision tree approach to increase both classification and gen-

eralization accuracy. For this purpose the random forest was

introduced by Tin Ho [18]: Random forest is an ensemble of
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tree predictors such that each tree depends on the values of a

random vector. This vector is sampled independently of the

same distribution for all the numerous trees in the forest [10].

To classify a new object from an input vector, the input vector

is presented to each of the trees in the forest. Each tree gives

a classification, and we say the tree “votes” for that class. The

forest chooses the classification having the most votes.

For growing trees, if the number of cases in the training

set is N , sample N cases at random - but with replacement,

from the original data. This sample will be the training set

for growing the tree. If there are M input variables, a number

m << M is specified such that at each node, m variables are

selected at random out of the M and the best split on these

m is used to split the node. The value of m is held constant

during the forest growing. Each tree is grown to the largest

extent possible. There is no pruning. For classification, the

final selection by the forest is based on the maximum voting

among the trees.

Breiman [10] presents generalization error in terms of

the strength of each random tree and the correlation between

them. In case of random forest for the kth tree a random

vector Θk is generated. The independence property enforce

that the random vector Θk is independent of the past random

vectors Θ1, . . .Θk−1 but with the same distribution. For ag-

gregate tree classifiers {h1(x), h2(x), . . . , hk(x)} the margin

function can be defined as:

mg(X, Y ) = x̄kI(hk(X) = Y )−max
j �=Y

(x̄kI(hk(X) = J)))

(1)

where x̄ is the average and I the indicator function. The gen-

eralization error using the margin function is given by,

PE∗ = PX,Y (mg(X, Y ) < 0 (2)

Which indicates the probability over the space of the input

vectors X and class labels Y . Breiman defines the upper

bound on the generalization error as,

PE∗ ≤ ρ̄
(1− s2)

s2
(3)

Where ρ̄ is the mean correlation between classifiers and s
being the strength of the ensemble. Thus generalization er-

ror depends on correlation between the random trees and the

strength of individual classifiers in the forest. With the in-

crease in tree count the generalization error converges to a

limit. In practice as few as 10 trees present competitive re-

sults [10]. We evaluate this concept in the following section.

3. EXPERIMENTS

We have used images extracted from 25 videos provided by

an Internet service provider that requires a skin detection ap-

plication for their on-line platform. The sequences contain

scenes with multiple people and/or multiple visible body parts

and scene shots both indoors and outdoors, with steady or

moving camera and varying illumination. The data set is

available on-line1.

A total of 8991 images with annotated pixel-level ground

truth are used. Performance is measured using F-score, esti-

mated by equally weighting precision and recall. Evaluation

is done for the random forest, Bayesian network, Multilayer

Perceptron, SVM, AdaBoost, Naive Bayes and RBF network

in the IHLS color space, see Figure 1.

Random forest shows the best performance in terms of

accuracy, precision and recall as shown in Table 1. For ran-

dom forest we tested the effect of growing more than one tree

(shown in Figure 2). Even with only one tree (and therefore

very fast training times), we reach F-score of 0.672, which is

still outperforming all the other approaches. We get the max-

imum F-score of 0.739 with 10 trees. Addition of more than

10 trees does not increase F-score but rather converges to a

stable performance.

Fig. 1. F-score of different classifiers.

Fig. 2. F-score vs number of trees grown for random forest

approach (X-axis: number of trees used. Y-axis: F-score)

1http://www.feeval.org
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(a) Original frame (b) Random forest (c) Bayesian network (d) Multilayer Perceptron

(e) SVM (f) AdaBoost (g) Naive Bayes (h) RBF network

Fig. 3. Skin detection using different classifiers. Non-skin is black. Detected skin regions are from the original frame.

A brief summary of the classifiers being compared along

with the Weka [19] parameters is given below.

Bayesian network: A Bayesian network is a represen-

tation for random variables and a conditional independences

with in these random variables. For a Bayesian network a

Markov boundary of each node is defined. A Markov bound-

ary is related to the independences relationship of nodes. For

skin segmentation the parameter settings are: For conditional

probability tables of the Bayes network, a simple estimator

with Alpha of 0.5 is used, the searching is based on K2 with

the number of parents equals 1 and the score type of Bayes.

No ADTree is used. As shown in Figure 3(c) and Table 1 the

Bayesian approach gives accurate skin model.

Multilayer Perceptron: A multilayer Perceptron is a

feedforward artificial neural network model. It maps input

data onto a set of appropriate output. Compared to standard

linear perceptron, it can distinguish data that is not linearly

separable by using a nonlinear activation function. The learn-

ing rate selected is 0.3, momentum of 0.2, validation set and

seed is null, validation threshold being set to 20. Sample skin

detection is shown in Figure 3(d). The accuracy, precision

and recall are reported in Table 1.

SVM: SVM searches for the optimal separating hyper-

plane for inter-class separation. The polynomial kernel is

used. The complexity parameter selected is 1, tolerance pa-

rameter being 0.0010, epsilon for round off errors of 10−12,

the random seed being 1. The visual appearance of SVM in

Figure 3(e) reveals more non-skin pixels flagged as skin. The

main problem in the model seems to be the non-uniform dis-

tribution of the range of the color space components. Color

spaces with angular terms suffer with the classification using

Table 1. Skin segmentation: classifiers statistics.

Classifier Accuracy Precision Recall

Random forest 0.877 0.738 0.740
Bayesian network 0.806 0.588 0.643

Multilayer Perceptron 0.816 0.627 0.565

SVM 0.780 0.545 0.531

AdaBoost 0.798 0.607 0.453

Naive Bayes 0.770 0.545 0.271

RBF network 0.773 0.563 0.250

SVM.

AdaBoost: AdaBoost is adaptive i.e. subsequent classi-

fiers built are tweaked in favor of those instances misclassified

by previous classifiers. AdaBoost is less sensitive to the over-

fitting problem than most learning based algorithms. For pa-

rameter settings: The weight threshold being set to 100, seed

is 1, the number of iterations selected are 10 and Decision
Stump is selected as the base classifier to be used. As shown

in Figure 3(f) and Table 1, the weighting of the adaboost gives

a reliable and precise model with comparably low recall rates.

Naive Bayes: The Naive Bayes classifier is a specification

of Bayes inference with a naive assumption of independence.

It is a simple probabilistic classifier providing maximum a

posteriori probability for each testing instance. For skin prob-

lem, the kernel estimator and the supervised discretization is

set to false. Sample skin detection is shown in Figure 3(g).

Comparably low accuracy, precision and recall are shown in

Table 1.

RBF network: RBF network is a special kind of neural

network and uses radial basis functions as activation func-
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tions. RBF network generally consists of three layers: an

input layer, a hidden layer with a non-linear RBF activation

function and a linear output layer. For parameter settings:

The clustering seed is set to 1, the number of clusters are set

to 2, the ridge value for the logistic/linear regression is 10−8,

maximum iterations are set to -1 and 0.1 is selected as the

minimum standard deviation for the clusters. For sample skin

detection see Figure 3(h). The lowest F-score among all the

classifiers can be seen in Figure 1. The parameter tuning is

crucial for the classifier. Still, for this noisy data it was not

possible to achieve state of the art performance.

Throughout all the experiments, we are using the IHLS

color model which is improved to other angular color spaces

(HLS, HSI, HSV, etc.) by removing the normalization of the

saturation by the brightness [17]. This property overcomes

certain numerical problems on the limits of the color chan-

nels giving a better distribution in our feature space. For all

the classifiers, the three raw components of IHLS i.e. H, L and

S are used as the feature vectors. Ten fold cross-validation is

used for evaluation. On the data set the random forest has a

higher F-score than all other techniques (shown in Figure 1).

The random forest approach provides an increased classifica-

tion performance of almost 12% to Bayesian network, 14% to

Multilayer Perceptron, 20% to SVM, 22% to AdaBoost, 37%

to Naive Bayes and 39% to RBF network approach.

4. CONCLUSION

Skin color features are located in a simple feature space with

a high amount of noise. We analyze pixel based skin classi-

fication using different state of the art classifiers on a large

per pixel annotated publicly available data set. Due to its ex-

plorative nature and hierarchical structure, the random for-

est generalizes well and robust, outperforming all other ap-

proaches significantly. We are able to show that when aiming

for faster training times the number of trees grown can be re-

duced while still maintaining state of the art performance.
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