

An experiment *underway*...

1-unit lab (one is required)

5 sections of 12 4 with CS1 or CS2 1 of seniors

6 Creates + 6 Kinects + 6 netbooks + 6 drones ≈ **\$6k**

Goal: to increase students' computational sophistication

not to teach ROS or robotics

N/A?

all situations are different...

The labs weekly, 2-3 hrs.; 1 hr. for write-up; no other work

Week	Lab challenge	New hardware	CS Topics Emphasized
1	Line-following	creates	command-line & Python
2	Color segmentation	Kinects: RGB	event-handling
3	Finite-state control	-	finite-state machines
4	Visual servoing	-	understanding vs.
5	Wall-angle estimation	Kinects: Depth	implementing
6	Robot minion!	-	proportional control
7	Wall-following	-	larger-scale integration
9	Gestural control	quadcopters	GUI/visualization
10	Autonomous flight	-	defensive programming
11 - 14	(Open-ended projects)	all/any	self-defined problems

The labs weekly, 2-3 hrs.; 1 hr. for write-up; *no other work*

Western State College

from visiting last summer...

Western State College

... to outreach this winter

Western State College

... to outreach this winter

Line following

Create

command-line and Python

thanks: Matt Boutell

Line following

Create

command-line and Python

made it! (the video is 4x)

Color segmentation

Kinect: RGB

keyboard/mouse events

challenging (!) warm-up activity

Color segmentation

Kinect: RGB

keyboard/mouse events

Finite-state control

Kinect: RGB

+ your own custom state-machine thread

Finite-state control

understanding vs. implementation

Task: to drive the robot to any point clicked in the Kinect's image

Finite-state control

Finite-state control

Kinect: RGB

Finite-state control

Kinect: RGB

Wall-angle estimation

Kinect: Depth

Wall-angle estimation

Kinect: Depth

Wall-angle estimation

Kinect: Depth

Feedback on labs 3-5...

"Our biggest challenge was figuring out the math behind aligning the robot with the target point." - Sarah and Steve

"We ran into a lot of problems in doing the actual math which should direct the roomba." - Alexa, Edward, and Spencer

"We focused most of our attention on getting the math correct."

- Eric and Benson

"Math is amazingly hard ... "

- Jessi and Haak

Feedback on labs 3-5...

Robot follower

Kinect: Depth

proportional control

things can always be worse ...?

Challenge: lead your robot out the door, into another room, and back

Weeks 6-7

lots of *floor* time

lots of *floor* time

even when it *does* work

Robot follower

Kinect: Depth

proportional control

success... (at 2x)

Wall follower

Kinect: Depth

integration and debugging

Kinect: Depth

integration and debugging

down the halls...

Gesture control

quadcopters

"Supermanning" the drone – *from the drone's point of view*.

Autonomous flight

defensive programming

Escape!

Weeks 11-14

open-ended projects

self-defined problems

cat-and-mouse robots (4x)

Summer!

Summer!

int .

In conclusion...

Computational confidencebuilding right after CS1

command-line flaky hardware making state explicit difficult debugging compelling applications!

Self-directed portfolio of results (and failures)

Getting beyond **DWIC**...

_ 0 Robotics × C CorinneD × C MattTam × C TAdair_S × C JebBrook > New Tab C 🔓 https://www.cs.hmc.edu/twiki/bin/view/Robotics/CorinneDruhan_MarissaNovak_Lal 😭 🔧 🗃 home 🗃 CS5 🗱 CS60 *ĕ* ACM M gmail 🕌 KoolAid 😓 trac 🔇 REU IRB 💽 SI-SI 💙 🛅 Other bookmarks Results We were able to make our robot successfully start from any location in the camera's view, allow the user to rightclick to choose a target on the carpet and type F to put the robot in a state to find the target, and find the target When it reached the target it plays a song and stops Media IMG_0083.MOV: Our robot is finding one target, then we change the target and it follows that instead IMG 0059.MOV: The first time our robot successfully finds the target, then plays a song Perspective

10-20 page write-up with screenshots, videos, descriptions, and reflection

challenging (!) warm-up activity

