ROS after CS1?

6 robots, 6 quadcopters, 60 students, and ROS
An experiment *underway*...

1-unit lab
(one is required)

5 sections of 12
4 with CS1 or CS2
1 of seniors

6 Creates + 6 Kinects +
6 netbooks + 6 drones
\approx \$6k

Goal: to increase students' computational sophistication

not to teach ROS or robotics
N/A?

all situations are different...
The labs

Weekly, 2-3 hrs.; 1 hr. for write-up; no other work

<table>
<thead>
<tr>
<th>Week</th>
<th>Lab challenge</th>
<th>New hardware</th>
<th>CS Topics Emphasized</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Line-following</td>
<td>creates</td>
<td>command-line & Python</td>
</tr>
<tr>
<td>2</td>
<td>Color segmentation</td>
<td>Kinects: RGB</td>
<td>event-handling</td>
</tr>
<tr>
<td>3</td>
<td>Finite-state control</td>
<td>-</td>
<td>finite-state machines</td>
</tr>
<tr>
<td>4</td>
<td>Visual servoing</td>
<td>-</td>
<td>understanding vs. implementing</td>
</tr>
<tr>
<td>5</td>
<td>Wall-angle estimation</td>
<td>Kinects: Depth</td>
<td>proportional control</td>
</tr>
<tr>
<td>6</td>
<td>Robot minion!</td>
<td>-</td>
<td>larger-scale integration</td>
</tr>
<tr>
<td>7</td>
<td>Wall-following</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Gestural control</td>
<td>quadcopters</td>
<td>GUI/visualization</td>
</tr>
<tr>
<td>10</td>
<td>Autonomous flight</td>
<td>-</td>
<td>defensive programming</td>
</tr>
<tr>
<td>11-14</td>
<td>(Open-ended projects)</td>
<td>all/any</td>
<td>self-defined problems</td>
</tr>
</tbody>
</table>
The labs

weekly, 2-3 hrs.; 1 hr. for write-up; *no other work*

<table>
<thead>
<tr>
<th>Week</th>
<th>Lab challenge</th>
<th>New hardware</th>
<th>CS Topics Emphasized</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Line-following</td>
<td>creates</td>
<td>command line & Python</td>
</tr>
<tr>
<td>2</td>
<td>Color segmentation</td>
<td>Kinects: RGB</td>
<td>event-handling</td>
</tr>
<tr>
<td>3</td>
<td>Finite-state control</td>
<td></td>
<td>finite-state machines</td>
</tr>
<tr>
<td>4</td>
<td>Visual servoing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wall-angle estimation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Wall-following</td>
<td></td>
<td>proportional control</td>
</tr>
<tr>
<td>7</td>
<td>Wall-following</td>
<td></td>
<td>larger-scale integration</td>
</tr>
<tr>
<td>9</td>
<td>Gestural control</td>
<td>quadcopters</td>
<td>GUI/visualization</td>
</tr>
<tr>
<td>10</td>
<td>Autonomous flight</td>
<td></td>
<td>defensive programming</td>
</tr>
<tr>
<td>11-14</td>
<td>(Open-ended projects)</td>
<td>all/any</td>
<td>self-defined problems</td>
</tr>
</tbody>
</table>

Singly, in groups, or as a full course – we hope the modules might be of use.

Western State College

from visiting last summer...

15 hours later
Western State College

... to outreach this winter
Western State College

... to outreach this winter
Week 1

Line following
Create
command-line and Python

easy
medium
difficult

thanks: Matt Boutell
Week 1

Line following
Create
command-line and Python

made it! (the video is 4x)
Week 2

Color segmentation
Kinect: RGB
keyboard/mouse events

RGB and HSV

original image with overlay
segmented image
Week 2

challenging (!) warm-up activity

... to identify RGB and HSV components
Week 2

Color segmentation

Kinect: RGB

keyboard/mouse events

Creativity?
Recursion!
Week 3

Finite-state control
Kinect: RGB
finite-state machines

+ Kinect images...

+ your own custom state-machine thread

robot sensors...

keybd

F' key

forward

2 seconds

bump!

back
Task: to drive the robot to any point clicked in the Kinect's image

Extra! *then get back again...*

Why is this difficult? – and why is it even more difficult to *go left*?
Week 4

Finite-state control

Kinect: RGB

understanding vs. implementation
Week 4

Finite-state control
Kinect: RGB
understanding vs. implementation

The race!
Week 4

Finite-state control

Kinect: RGB

understanding vs. implementation

Race #1: to the tape dot and back

The race: a more polished view...
Week 5

- Wall-angle estimation
- Kinect: Depth
- Understanding vs. implementation

Kinect's range images
What if this pixel at (42,240) reads 1 meter "deep"?
What are that point's coordinates in meters?
Week 5

Wall-angle estimation

Kinect: Depth

understanding vs. implementation

Top-down look at one slice of the Kinect's view (row=240)

- **distance axis** – these are the Kinect's readings (in meters)
- these black dotted lines are the edges of the Kinect's 57° field of view. The 640-pixel width divides that FOV into equal-sized pieces

- **horizontal axis** – these values need to be computed

\[\text{pixel}_x = 42 \]

\[\text{pixel}_x = 0 \]

at (42,240) the Kinect reports this depth = 10 m

\[\text{pixel}_x = 639 \]

57° total field of view
Week 5

Wall-angle estimation

Kinect: Depth

understanding vs. implementation

What is this angle, in depth?
Feedback on labs 3-5...

"Our biggest challenge was figuring out the math behind aligning the robot with the target point."
- Sarah and Steve

"We ran into a lot of problems in doing the actual math which should direct the roomba."
- Alexa, Edward, and Spencer

"We focused most of our attention on getting the math correct."
- Eric and Benson

"Math is amazingly hard.."
- Jessi and Haak
Feedback on labs 3-5...

understanding vs. implementation
Week 6

Challenge: lead your robot out the door, into another room, and back

things can always be worse...?
Weeks 6-7

lots of *floor* time
Weeks 6-7

lots of floor time

even when it does work
Week 6

Robot follower
Kinect: Depth
proportional control

success... (at 2x)
Week 7

Wall follower

Kinect: Depth

integration and debugging

moving-wall following (2x)
Week 7

Wall follower

Kinect: Depth

integration and debugging

don't the halls...
"Supermanning" the drone – *from the drone's point of view.*
Week 10

Autonomous flight
quadcopters
defensive programming

Escape!
Weeks 11-14

open-ended projects

self-defined problems

U Penn-like perching?

drone/Create cooperation

cat-and-mouse robots (4x)
Summer!
In conclusion...

Computational confidence-building right after CS1 command-line flaky hardware making state explicit difficult debugging compelling applications!

Self-directed portfolio of results (and failures)

Getting beyond DWIC...

10-20 page write-up with screenshots, videos, descriptions, and reflection
Week 2

challenging (!) warm-up activity

... to identify RGB and HSV components