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Abstract. As they decrease in price and increase in fidelity, visually-textured 3d 
models offer a foundation for robotic spatial reasoning that can support a huge 
variety of platforms and tasks. This work investigates the capabilities, strengths, and 
drawbacks of a new sensor, the Matterport 3D camera, in the context of several 
robot applications. By using hierarchical 2D matching into a database of images 
rendered from a visually-textured 3D model, this work demonstrates that -- when 
similar cameras are used -- 2D matching into visually-textured 3D maps yields 
excellent performance on both global-localization and local-servoing tasks. When 
the 2D-matching spans very different camera transforms, however, we show that 
performance drops significantly. To handle this situation, we propose and prototype 
a map-alignment phase, in which several visual representations of the same spatial 
environment overlap: one to support the image-matching needed for visual 
localization, and the other carrying a global coordinate system needed for task 
accomplishment, e.g., point-to-point positioning. 

1   Motivation and Context 

This project investigated the strengths and drawbacks of a sensor that is relatively new for 
robot systems: a Matterport camera [1]. As shown in figure 1, the camera offers a new level 
of ease and fidelity to the creation of visually-textured 3D maps. Although made more 
ubiquitous by the Kinect [2], the use of such rich, visual 3D representations is still relatively 
new as a foundation for robot spatial reasoning. Considerable work has shown the power of 
3d-to-3d matching, e.g., [3,4,5,6] and many others, but the underlying 3D visual maps are far 
less well studied for robot platforms with our era's most accessible and least expensive 
sensor source: a run-of-the-mill RGB camera. Bridging this 2D-3D gap will allow mobile 
robots to move autonomously within rich environmental models using inexpensive sensors. 
 
This work developed an image-matching framework to allow robots of several types -- with 
only 2D image input -- to recognize their position with respect to a 3D (Matterport) model. 
Ideally, any robot with a camera would be able to utilize this work's algorithms to determine 
its position within a visually-textured 3D model; in practice, we found that different imaging 
transforms can cause significant degradation of matching accuracy. To compensate, we 
prototyped a system in which local 2D visual maps from different camera sources are 
aligned to the 3D model, providing both accurate 2D visual matching and corresponding 3D 
coordinates within the model's global coordinate system. 
 
Thus, this work demonstrates both the challenges and the promise emerging from Matterport 
models and other rich, visually-textured 3D maps. Specifically, we contribute 
 
• the use of Matterport's sensor to create 3D maps suitable for a variety of robot tasks  
• a three-tier approach for matching a robot's live-acquired 2D images with a database of 
known-location renderings from a 3D visual Matterport model 
• a quantitative assessment of both the accuracy and speed of that matching process 
• task-applications implemented on several different robot platforms, providing insights 
into the matching-process's strengths (accuracy and speed sufficient to support real-time 



control) and drawbacks (less robustness across distinct cameras/image sources) – along with 
an alignment step that mitigates the drawbacks 
 
Overall, there are compelling reasons for considering Matterport models as a basis for robot 
control: they match our intuition of our shared environs as a "human visual world" (even 
though we subconsciously construct it, moment-to-moment), they are the space in which 
humans plan and execute tasks, and thus they are the space in which humans most naturally 
specify tasks for robot planning and execution. This work helps introduce and inform both 
roboticists and vision researchers of what Matterport's models can (and can't)  contribute to 
their efforts.  

 

 
Figure 1 – Matterport camera and a lab-environment model, along with several rendered 
images from that model and the known locations from which those images were rendered. 

2   Processing the Matterport Models 

Computationally, the fundamental problem we tackle is that of comparing a (live) 2D image 
with a 3D model created both at an earlier time and from perspectives different than the 
current image. Our approach to this problem is split into two parts: a preliminary processing 
of the 3D environmental model(s) and robust 2D image matching.  
 
We made a comprehensive model of several environments beforehand. Figure 1 shows 
screenshots from one that served as our primary robot workspace; others from our lab and 
elsewhere are available from [1]. To create these models, we first took multiple scans of the 
room with the Matterport camera, at about 45 seconds per scan. Following the company's 
standard process, the data was sent to Matterport, where it was compiled into a photorealistic 
3D model of the environment. The default interface, however, allows navigation only from 
and to the locations at which scans were taken in the real world, noted in the top row's 



middle panel. This constraint prevents us from being able to create renderings – with 
accompanying coordinates – except from those environmental viewpoints.  
 
This problem was solved by downloading the full environmental mesh from and processing 
it with Unity 3D [7]. Its rendering engine allows arbitrary navigation of the space, rendering 
a 2D view of the model from any location inside it or out, and even from poses far from 
source-scan locations, e.g., Figure 1's top-right rendering. 
 
2.1  From 3D model to 2D renderings 
 
We leveraged this geometric freedom to create a database of 2D images of the environment. 
Inside the three-dimensional model, we programmed a virtual camera to move to each lattice 
point within a large grid, taking one screenshot facing each wall at every position, creating a 
set of 200 2D images that covered the space: many of those renderings had significant field-
of-view overlap. We built several such databases for testing; in the final version, we rotated 
the camera 90 degrees between each rendering in order to minimize the number of pictures 
in the database. Certainly, Unity 3D makes it straightforward to create sparser or denser sets 
of renderings if the additional resolution is needed for a specific task. Crucially, the Unity-
based system recorded and remembered the pose at which each rendering was made: thus, 
each image "knew" where it had been taken. Figure 1 (bottom row) shows four of these 
rendered images, along with an overview showing the location and direction of the virtual 
camera's location for each. 

3   Matching into the database of rendered images 

To facilitate finding the best match between a robot’s current image and the images in the 
database we combined several image comparison algorithms using OpenCV 3.0's Python 
bindings. The resulting system used three steps in order to match a novel (live) image with 
the database of renderings described in Section 2: 

1. First, color-histogram matching is performed in order to narrow the search.  
2. Geometric matching with ORB features further narrows the set of possible matches  
3. Finally, several geometric constraints are considered: the database image that best 

satisfies those constraints is used as the best match for the task's current timestep  
 
Where the database's resolution suffices, robot tasks use the location of the best-matched 
image as an approximation of the current robot location: Section 4 shows that for some aerial 
navigation tasks, this suffices. Further pose refinement is possible, however, from the image 
information in the corresponding ORB features; Section 4 also highlights other tasks, e.g., 
robot-homing that leverage this additional precision. This section details the three-step 
matching process and presents its results. 
 
3.1  Pixel-based and color-histogram matching 
 
The first group of algorithms used in the image matching process consisted of seven scoring 
thods using color-histogram and pixel-by-pixel comparisons. The three pixel-by-pixel 
comparisons included are mean-squared error (MSE), root MSE, and the structural similarity 
index [8]. We also use four color-histogram comparison algorithms adapted from [9]. For 
each image, we discretized its data into N=16 colors (histogram bins). Four different 
histogram-comparison methods provided by OpenCV [10], named Correlation, Chi-Square, 
Intersection, and Hellinger, were then used in order to measure the similarity of a novel 
image with each database image. Figure 2 (top) shows the resulting scores of a one-vs-all 
comparison using a small seven-image database obtained both from [9] and our 
environment's images. Here, the test image (a lake scene) is included in the comparison in 
order to show how a perfect match score compares to the imperfect match scores. In all 



subsequent tests, however, including those summarized in the results in Figure 2 (bottom), 
the test image was not included in the comparison set. 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2 – (top) examples of the scores produced by the four color-histogram-matching 
algorithms used in the image-matcher's first pass; (bottom) the overall match results both for 
individual tiers of the image-matching algorithm, top four rows, and the last-row final result. 

With layers of color-based filtering, keypoint-based matching, and geometric consistency 
checks, all novel rendered images matched very closely to the 200-image database. 

 
As Figure 2's lower table shows, even a small test database of 15 images from our lab 
environment showed only mediocre accuracy, when based on color-based matching alone 
(top row). This prompted the addition of a second tier of algorithms, which added geometric 
information to the matching process via small-patch image features.  
 
3.2  Feature-based matching 
 
The second group of algorithms relied on an image’s geometric information. A menagerie of 
feature types exist with SIFT [11] and SURF [12] two of the most commonly used. 
Following [13], ORB keypoints, i.e., Oriented FAST and Rotated BRIEF keypoints, detect 
and compute distinctive image locations at a speed more than ten times greater than that of 
SURF (and SIFT). That speed guided our choice of ORB. Using OpenCV's ORB 
implementation, our image-matcher considers five geometric scores: (a) the sum of all ORB-
matched visual distances, (b) the median of those distances, (c) their mean, (d) the sum of 
the visual distances of the top 50% of matches by visual similarity, and (e) the number of 
inlier matches based on geometric (homography) consistency, as described in section 3.3. 



Preliminary tests involving the accuracy of the image matching system (Figure 3, at right) 
showed that, like the color matching, the geometric matching alone did not provide accuracy 
suitable for supporting robot navigation. Having obtained a database of 200 images from the 
3D model of the lab environment, a subset of fifteen images was run against the other 
images in the set and found the best match as determined by the system. The result was then 
assessed by eye, noting each as good, partially good, or bad. The (human assessment) metric 
the team used for these three categories, along with examples of each, appear in Figure 3, 
below. Again, no image was included within the database set against which it was matched. 

 
Figure 3 – examples and criteria for judging the categories good, partly or partially good, 

and bad image matches: Good image matches are one of the nearest neighbors in a sampled 
direction; partly good matches overlap less closely; bad matches do not overlap. 

 
In addition to comparing color-only and feature-only matching, we compared two different 
methods for determining the "best" match: a “voting” system and a “scoring” system. A total 
of 12 match-scores are computed (7 pixel- and color-based and 5 ORB-based, as noted 
above): those 12 are our feature vector for how well two images match. The "voting" system 
gives a single point, or vote, to the best-matching image for each of these 12 algorithms, 
with the winner having the largest number of votes. By contrast, the normalized "scoring" 
approach first normalizes each algorithm on a commensurate scale of 0.0 to 1.0\ and then 
sums the 12 individual scores. The highest overall score is named the best match.  
 
For each tier image-matching layer by itself, the "voting" system yielded more accurate 
results – this is due to the fact that a single bad score can sink an otherwise excellent match 
due to the color or feature differences in the small portion of the two images that do not 
overlap. However, even the voting system produced a completely incorrect match for 20% or 
more of the images examined. To improve this result, we post-processed the best matches to 
determine the amount of visual overlap they contained.  
 
3.3  Improving match quality via geometric constraints 
 
Upon examining the results carefully, the source of all of the poor and many middling 
matches was an accidentally well-matched set of image keypoints across two frames with 
similar color compositions. Figure 4 shows a typical example of a poorly-aligned and a well-
aligned set of keypoints from example matches. As long as there are four matched keypoints 
– and every possible match included more than four – the transformation of those keypoints' 
locations from the test image to the database image yields a 2D-2D homography that 
transforms the first image plane into the second. When the keypoints are inconsistently 
matched, the result is a dramatic – and obviously incorrect – warping of the original scene, 
as Figure 4's top example illustrates. 
 



 

 
Figure 4 – (top) a poorly-aligned group of keypoints, yielding to a homography-transformed 

original that has "collapsed" into a very small image, a sign that the match is incorrect; 
(bottom) a well-aligned group of keypoints, with significant overlap: a strong match. 

 
As such, we could determine when a bad match had been made by examining the Euclidean 
distance of the four corners post-homography. If the transformed corners pull too close to (or 
too far from) each other, the transformed image has experienced a "collapse" (or its reverse), 
and the system eliminates it from contention, continuing on in its examination of other 
candidate matches from the database.  

 
With this homography-based geometric-consistency check, the results were encouraging. 
With the same database of 200 images as in the preliminary tests, now in a leave-one-out 
analysis, the test of every one of the 200 images produced an accurate, or good match. Thus, 
this homography check eliminated the bad matches without affecting the good ones, which 
ware those with significant image overlap, e.g., Figure 4's second example. 
 
Though his paper's approach does benefit from not requiring camera calibration, these 
geometric constraints are not the only ones that might benefit this application. For instance, 
the P3P algorithm [17], among other 2D/3D relationships such as the epipolar constraint 
[16,18], leverage the 3D model more deeply in order to support image-feature matching.  

 
3.4  Results: from accuracy to speed 
 
Encouraged by the accuracy of these results, we also considered the time required to match a 
novel image with a set of K database images. For use in robotic applications, speed translates 
directly into task-capability and -responsiveness. In addition, time-per-database-image 
determines how large, either in spatial extent or pose resolution, the environment's rendered 
database can be, while still supporting the ultimate goal of the project: autonomous, visual 
navigation. Thus, we examined how different sets of algorithms performed in terms of time 
per image, with the results shown in Figure 5:  

 



    
Figure 5 – (left) the time used in second to execute the full matching system on full-size 

(249x187) images, as well as its two component layers: ORB indicates the geometric 
components; NonORB, the color-based components of the algorithm; (right) the speedup 

obtained when decimated (99x75) images are used for the color-based matching. 
 
Noticing the smaller time per image for ORB algorithms when compared with non-ORB 
algorithms for the default image size of 249x187 (Figure 5, left), we explored whether 
smaller images could significantly improve the efficiency of the color-based matching. 
Although the ORB algorithms did not perform well at a smaller image size, the color 
algorithms did. The change to 99x75 pixel images – only for the color-based matching -- 
improved the run-time by approximately an entire order of magnitude (Figure 5, right). The 
significantly smaller time-per-image solidified the design decision to use color-based 
matching as a first pass over the database. The final image-matching system, as well as both 
of these timing tables, employ precomputed histograms and precomputed ORB features for 
the database images. For the test (novel) image, however, the time to compute those features 
is included. 

4   Validation via visual navigation tasks 

With accurate and fast results, we deployed and evaluated the image-matching system in 
service of several autonomous, visual-navigation robot tasks:  

1. Image-based localization using a pan/tilt rig and a webcam: two live-image cameras 
distinct from the one used to image the database  

2. Image-based homing on a differential-drive wheeled vehicle, comparing odometric 
homing accuracy with the matching system's image-based feedback 

3. Point-to-point navigation of an aerial vehicle whose only sensor is a forward-facing 
camera 

Each of these tasks – and its results – is detailed in the following subsections. For these 
tasks, the system used a 3d visually-textured model, in .obj format, via the widely used 
Unity3d rendering engine. Though obtained by a Matterport camera, the approaches detailed 
here apply to any such model in a compatible format. 
 
4.1  Localization using different source cameras 
 
We sought to test the functionality of the 2D image-matching under imaging conditions very 
different than the source, the Matterport sensor. To so this, input images were drawn from a 
pan/tilt rig with an inexpensive webcamera (as a side note, this platform is also a Nerf-based 
missile launcher) attached and the higher-quality camera built-in to a desktop iMac. Using 
images from either the launcher’s built-in camera or the computer’s webcam, the system 
compares those images to the database of 2D images from the model using our image 
matching program, and indicates the location at which the image was taken in the 3D model. 
Building from ROS's infrastructure [14], a client/server system connected the novel images 
(taken and compared on the server side) with the rendering of the resulting estimated camera 
position (by an arrow, as done in Figure 1). 



 
As Figure 6 attests, the results were far less accurate than those obtained using the same live- 
and database-source cameras. Here again, three examples are provided: one each of bad, 
partially good, and good, this time equivalence classes for the pose of the result. In each case 
the best-matched database image is on the left, and the novel image is on the right (these, 
taken from the iMac's built-in camera): 

Figure 6 – example pose matches and their results when using two different source cameras, 
each distinct from the original Matterport model's. Both a small (32-image) and a larger 

(243-image) database of environmental 2D renderings were compared. The strong accuracy 
results, above, are not replicated when the novel-image sources differ from the model's. 

 
Combined with the excellent accuracy of the final matching system presented in Section 3 
and Figure 3, these results suggest several things. First, with different source cameras, the 
system is less accurate for larger databases: this results from the significantly different color 
response of each camera's sensor. The larger underlying database seems to provide more 
opportunities for distractors, causing a lower accuracy there than for the smaller set of source 
images. Most surprising to us was that, when the iMac's camera and even the low-quality 
launcher's webcam were used as both the source of both novel and stored images, the system 
performed at 100% (or near-100%) accuracy: it was not the absolute quality of the imaging 
sensor that mattered but its consistency.  

 
4.2  Visual homing vs. odometric homing on a wheeled robot 

 
To leverage that fact for the two subsequent tasks (wheeled and aerial navigation), we 
overlaid the 3d environment's rendered images in a task-dependent way with images from 
the wheeled robot's camera, which was another launcher camera riding atop an iRobot 
Create, and with images from the drone's camera – the built-in sensor in a Parrot AR.Drone 
quadcopter. The wheeled vehicle was then run through eight homing tasks: from a given 
initial position – and initial image – the robot was driven randomly for several seconds in 
order to move far from that starting location.  
 
The goal from there is to return home, i.e., to return to the initial position through a 
combination of odometry and image matching. First, the wheel-rotation sensors, which are 
quite noisy on the differential-drive Create robot [15], bring the robot back to the location 
believed to be the odometric starting point –not entirely accurate due to wheel slippage.  
From there, the image-matching program is used to further refine the robot's position, by 
minimizing two components of the image-error: the average scale-change, Δs, among the 
ORB features and their average horizontal image-translation, Δx, to align the current image 
as close as possible to the initial image's view. Here, the goal is investigating the use of the 
images, not the control strategy: the robot alternates making small Δs and Δx corrections 
until it is no longer improving. Figure 7 summarizes all 8 and illustrates one homing run. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7 -- overall pose-accuracy results and an example of a wandered and corrected 
trajectory (top row), along with an example of a bird's-eye view of the odometry-vs-image-
matching alignment (middle row) and the alignment of the images themselves (bottom row) 

 
4.3  A point-to-point task on a vision-only quadcopter 
 
A third spatial-reasoning task used to test the image-matching system combined the insight 
from the first localization trials (the significantly improved performance of having similar 
source and live cameras) with the coordinate system provided by the original image-
matching task (using the 3D model of the lab environment). To do this, an overlay of images 
from the forward-camera of a Parrot AR.Drone quadcopter was placed atop the coordinate 
system of the 3D model. Although the quadcopter's source images did not carry any 
information about their location in the lab environment, the 3D model to which those images 
were aligned did. In addition, because the images were regularly spaced, only one image 
needed to be hand-aligned in each drone location; the position of the rest could be inferred 
from the first. Although one could imagine a fully automatic alignment from the drone 
camera to the environment-model's camera, that process was not done for this set of tests. 
Figure 8 summarizes the results of a point-to-point task in which the drone sought out the lab 
environment's sofa, used image-matching to determine its orientation in the room, rotated to 
face the goal, again matched to confirm its rotational pose and determine its distance, and 
subsequently made the final motion required to land on the couch. 

 5 Verdict 

Inspired by the capability and potential of the Matterport camera's 3D visual models as a 
basis for robot spatial-reasoning tasks, this work sought to (1) develop a 2D image-matching 
system to allow (robots with) ordinary cameras to localize within a Matterport model (2) 
assess the performance of that image-matching, and (3) validate the system through three 
different robot tasks. The three-tier image-matching system developed here demonstrated 
and validated both the accuracy and speed required to support autonomous vision-based 
robot tasks, but only when the model and live source cameras were the same. Here, we 



accommodated that limitation by aligning images from the robot itself to those portions of 
the 3D model necessary for task success, e.g., to a single location in the case of robot 
homing and with several rotational scans of the lab for the point-to-point navigation task 
with the aerial robot.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 8 shows the use of aligned image-matching to accomplish a point-to-point aerial task. 
(first image, at upper left) Here, a quadrotor helicopter ascends and hovers in an unknown 

location within its environment. (second image, upper right) The image from the quadcopter 
(or "drone") appears at left and is matched with the image rendered from the lab map at 

right. That matching process (detailed in Section 3) results in a known, well-localized pose 
for the drone. From there (third image, middle left), the drone rotates in place until it is 
facing its desired destination (the lab couch). The process repeats (fourth image, lower 

right) with the drone-taken image matching a map-rendered image to trigger a state-change 
to proceed forward. Finally (fifth image, lower left), the drone lands at its desired pose. 

 
 
Although heartened by these successes, we believe this work highlights an important, 
perhaps underappreciated, challenge in using 3D models such as Matterport's for robot 
applications. As such models become more common, more opportunities will arise to query 
them with distinct sources of image information. Automatic photometric calibration between 
a Matterport camera and a (different) robot camera thus seems a tantalizing – and 
worthwhile – challenge. When combined with a robust 2D image-matching system, such as 
investigated in this work, that combination would tap even more of the robotics and spatial-
reasoning potential of those richly-textured 3D maps.   
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