Getting it working

Links:

Tekkotsu:

http://www.cs.cmu.edu/~tekkotsu/

Cygwin tutorial:

http://www.cs.cmu.edu/~tekkotsu/cygwin-install.html

Tekkotsu installation tutorial:

http://www.cs.cmu.edu/~tekkotsu/downloads.html

Tekkotsu - determining IP address at runtime:

http://www.cs.cmu.edu/~tekkotsu/FAQ.html#Determining_IP_Address

Java3D for the ControllerGUI:

http://java.sun.com/products/java-media/3D/downloads/index.html

Tekkotsu programming tutorial:

http://www.cs.cmu.edu/~dst/Tekkotsu/Tutorial/

Step 1: Acquiring the Hardware

In order to use the AIBO with Tekkotsu, several pieces of hardware are required:

Sony AIBO ERS-7

Pink programmable memory stick

Wireless access point.

Step 2: Installing the Software

In preparation for our work with the AIBO, we needed to install Tekkotsu on an available computer in Professor Dodd's lab. It turned out to be a Windows machine, which meant we needed to install Cygwin first. Luckily, the Tekkotsu Homepage had all of the necessary explanations: a tutorial for installing Cygwin with Tekkotsu in mind, a tutorial for the installation of Tekkotsu itself, and instructions for how to determine the AIBO's IP at run time.

Equipped with these resources we set to work and in good time (about 2-3 hours over 2 days) we had successfully installed and configured both Cygwin and Tekkotsu. Part of that time was spent setting up Cygwin to work with Java that was installed for Windows (this was non-trivial, but there was tutorial material on it that explained it). In order to enable the TekkotsuMon graphical tools (which are quite nifty) we needed to install the Java3D library, but that worked easily.

At this point, Cygwin and Tekkotsu were installed and configured and we were ready to test out the AIBO with the TekkotsuMon ControllerGUI.

Step 3: Making it Work

Initially, we assumed that the Mudd wireless network setup would work. I edited the wireless configuration file in the Tekkotsu suite (the file is wlandflt.txt in /ms/open-r/system/conf/) to instantiate the following settings:

HOSTNAME=cs-robodog

ESSID=CINE

WEPENABLE=0

WEPKEY=

APMODE=1

USE_DHCP=1

with the rest of the statements commented out. Upon starting up the AIBO, we attempted to connect with the ControllerGUI program, but that failed, as did ping attempts directed to 134.173.200.230 (the IP that CIS had assured me was assigned to the AIBO's MAC address). In an attempt at diagnostics, we changed /ms/config/tekkotsu.cfg by setting flash_on_start to 1. This caused the AIBO to say (and display) its IP address upon startup. It can also be caused to display its IP address by holding the head and chin buttons for 2 seconds (useful when you miss a digit the first time due to noise). Unfortunately, the AIBO informed us that it was at 168.xxx.xxx.xxx, which is an IP address that corresponds to DHCP failure. Something wasn't working. We proceeded to try all possible combinations of APMODE and USE_DHCP, setting

ETHER_IP=134.173.200.230

ETHER_NETMASK=255.255.255.0

and setting IP_GATEWAY and DNS_SERVER to match those of the lab computer (something like the numbers below):

IP_GATEWAY=134.173.63.200

DNS_SERVER_1=134.173.53.8

when USE_DHCP was off. Despite these and a few other desperate efforts, nothing worked. We still don't know why this did not work, but a thorough search of the settings space failed to connect to the Harvey Mudd wireless network.

A bit discouraged, we came back to work on the problem with the aid of Professor Dodds. We decided to try to connect to a laptop with a wireless card that he had in the lab, and we found an online tutorial for the laptop settings and proceeded. After another 2 hours of trying things, however, we were unable to get the AIBO to connect with the laptop. Further discouraged, we disbanded, Dodds agreeing to talk to some colleagues of his about the problems in addition to ordering the D-Link access point as back-up.

The next time we went in to the lab, the access point had arrived, so we decided to try it out. We tried once more to get the AIBO to connect to CINE while Dodds set up the access point. When our efforts failed, we set the access point to DHCP and the AIBO to USE_DHCP=1 and turned things on. In contrast to our previous efforts, this worked. We could even ping the AIBO. Unfortunately, the laptop didn't have Cygwin or Tekkotsu installed, so we decided to set up the access point with the desktop that had Tekkotsu on it. This proved fairly simple, and after a bit of fiddling we got things working and took the AIBO for a test drive around the lab. At this point, we are finally ready to start programming the AIBO.

How it worked:

Why these specific settings worked where others had not may remain forever shrouded in mystery, but what worked was successful. Here are the settings that we had in the AIBO's wlandflt.txt file for our successful test run:

HOSTNAME=cs-robodog

ESSID=AIBONET

WEPENABLE=0

WEPKEY=

APMODE=1

USE_DHCP=1

The rest of the settings are extraneous to the operation, and can be commented out.

To set up the router, the IP of the network connection for the computer connected to it must be set to 192.168.0.xxx (where 42 is the prefered value of xxx) as stated in the user manual. When the access point is plugged in, point a browser on the computer to 192.168.0.30 to access the router configuration. There should be buttons on the side and across the top of the page, choose DHCP from the buttons on the side (if it wants to make you use a wizard, either go through that or configure the rest of the settings manually). The important thing is just that DHCP be turned on. Also, in other settings the network SSID should be set to AIBONET (or to match the ESSID setting on the AIBO) and security should be turned off (or it might be able to be configured to match the AIBO's WEPENABLE and WEPKEY settings, we haven't tried that). Make sure that the access point is in access point mode if it has multiple modes. Finally, either note the IP at which the DHCP configuration starts giving out IPs, or just keep the DHCP configuration window open. Upload your configured project to the memory stick (plug in the card reader, plug the memory stick into the reader, execute make update in your project directory, and then safely remove the memory stick) and put it in the AIBO. When the AIBO powers up, it should say its IP. This should match an address in the DHCP range of the access point and the AIBO's MAC address and assigned IP should appear in the DHCP configuration window. Once this has occurred, you should be able to ping the AIBO from the computer connected to the router, and running the ControllerGUI application (in Tekkotsu/tools/mon/) with the AIBO's IP as an argument should connect to the AIBO.

Although these things are somewhat specific to the particular brand of router, the critical point is to have a router set to use DHCP and to ensure that the address the AIBO thinks it's at is the address the router thinks it is at (otherwise something is wrong).

Step 4: Not Making it Fail

Now that the AIBO was working, we actually needed to do something with it. Luckily, the Tekkotsu framework makes things almost ridiculously easy. However, while experimenting with the framework (mostly using code directly from the tutorials), we ran into several ways to break things:

Memory Leaks

After we added the visual processing components to our project, we began to experience memory leaks. Of course, we didn't actually pin it down to that right away. The AIBO has a free memory reporting feature that can be activated through the ControllerGUI, and we were able to use this to confirm that memory leaks were causing our AIBO to crash after less than 30 seconds of operation each run. The crashes were soft, in that shutting off the behavior allowed one to regain control of the AIBO, but rebooting was necessary in order to restart the behaviors. Because we had no idea as to the cause initially, we ignored the errors and attempted to get what functionality we could running, as the operation time before crashing was enough to test our behaviors. Eventually, we discovered the root cause of the leaks: At first, we were concerned that the repeated construction of motion commands was at fault, so we re-coded the system to use a pair of global motion command ids rather than constructing new motions every timestep. When this did not solve the problem (in fact, it caused new problems initially, see below) we determined that the NEW_SKETCH macro, which we were using to get camera frames, was at fault.

The NEW_SKETCH macro creates a sketch object, and is used in the tutorial to create a behavior which simply creates two static sketch objects upon being run. For our program, we needed to get camera information every timestep (which we adjusted between 50 and 200 milliseconds). The NEW_SKETCH macro winds up actually allocating memory, however, and this was the cause of the memory leak: every several hundred milliseconds, we were allocating new objects and we were never destroying them. Although we haven't had time to look through the Tekkotsu code for exactly how to destroy sketches (or for another method of getting visual information), these problems could be solved with another several hours of work. Unfortunately, the Tekkotsu tutorial does not mention this issue, and by working directly from it as a result of trying to figure everything out quickly after getting the AIBO to work, we overlooked this issue.

The lesson to be taken from this is to be careful about memory allocations, especially when you are using macros written by others. Also, if you suspect a memory leak, the built-in AIBO free memory reporter can be used to confirm or dispel those suspicions.

SharedObject construction

As mentioned above, we at one point were afraid that our memory leaks were caused by the creation of too many motion commands. Although this may have been a contributing factor, it was not the only one. However, we only found this out after an extensive code rewrite that collected all motion command references into two global IDs: one for moving the head and one for walking. After the usual debugging procedure got the code into a compile-worthy state, we uploaded it to the memory stick and put it in the AIBO. Although the code changes had been extensive, and we honestly expected to have to debug one or more run-time errors, we were not prepared for what happened: when the AIBO's power button was pressed, it paused for a moment, then played a sad tune and shut down. We made sure that the code compiled, and tried it again: no luck. The AIBO wouldn't even boot: we couldn't even telnet into it to get error information. Consulting the manual led us to believe that it was caused by a faulty memory card. We tried a different memory card to no avail. After much searching for alternatives, we finally found the cause: when setting up motion commands, we used the commands:

SharedObject<HeadPointerMC> head_mc;

SharedObject<WalkMC> walk_mc;

These constructed the actual motion command objects that we later registered with the motion controller (motman) in order to be able to issue motion commands. The objects needed to be in shared memory so that the motion controller could access them, however, when these commands got moved into the global namespace because we incorrectly believed that the head_mc and walk_mc variables needed to be global, they got run when the AIBO booted. At that point in the boot sequence, attempts to construct SharedObjects apparently made the AIBO very unhappy. By moving those data members into our ExploreGraph class, and letting just the id variables be global, we were able to achieve the same results and let the AIBO boot.

The lesson here is that no matter how unbelievable it may be that your code causes the AIBO not to boot, it is a possibility. More than that, any attempt to create a SharedObject (even just by declaration, as above) outside of a behavior (e.g. before the AIBO has fully booted and loaded behavior controls, etc.) will cause the AIBO to crash on boot.

Other than memory leaks and shared object construction, all of our bugs were run-of-the-mill C++ issues that we dealt with in a timely manner. These two issues deserve special attention, and bring out some of the quirks of the AIBO system that should be taken into account when dealing with it. After dealing with all of the issues mentioned in this section, we could get to the interesting part: making the AIBO do something interesting. Still, most of the work on this project might well have gone into getting things to work. Although perhaps uninteresting, this is far from a trivial part of the project.
