
CS 105

Lab 3: Defusing a Binary Bomb

Due Date: Check the Calendar

1 Introduction

The nefarious Dr. Evil has planted a slew of “binary bombs” on our machines. A binary bomb is a program

that consists of a sequence of phases. Each phase expects you to type a particular string on stdin. If you

type the correct string, then the phase is defused and the bomb proceeds to the next phase. Otherwise, the

bomb explodes by printing "BOOM!!!" and then terminating. The bomb is defused when every phase has

been defused.

There are too many bombs for us to deal with, so we are giving each group (continue in your two-person

group) a bomb to defuse. Your mission, which you have no choice but to accept, is to defuse your bomb

before the due date. Good luck, and welcome to the bomb squad!

Step 1: Get Your Bomb

Each group of students will attempt to defuse their own personalized bomb. Each bomb is a Linux binary

executable file that has been compiled from a C program. To obtain your group’s bomb, one (and only one)

of the group members should point your Web browser to the bomb request daemon at

http://wilkes.cs.hmc.edu:15213/

or to make things easier:

http://www.cs.hmc.edu/˜bomb/

Fill out the HTML form with the email addresses and names of your team members, and then submit

the form by clicking the “Submit” button. The server will build your bomb and return it to your browser in

a your browser in a tar file called bombk.tar, where k is the unique number of your bomb.

Save the bombk.tar file to a (protected) directory in which you plan to do your work. Then give the

command: tar -xvf bombk.tar. This will create a directory called ./bombk with the following files:

• README: Identifies the bomb and its owners.

• bomb: The executable binary bomb.

• bomb.c: Source file with the bomb’s main routine and a friendly greeting from Dr. Evil.

If you make any kind of mistake requesting a bomb (such as neglecting to save it or typing the wrong

group members), simply request another one. Likewise, if for some reason you request multiple bombs, this

is not a problem. Choose one bomb to work on and delete the rest.

1



Step 2: Defuse Your Bomb

Your job for this lab is to defuse your bomb.

You must do the assignment on Wilkes. In fact, there is a rumor that Dr. Evil really is evil, and the bomb

will always blow up if run elsewhere. There are several other tamper-proofing devices built into the bomb

as well, or so we hear.

You can use many tools to help you defuse your bomb. Please look at the hints section for some tips

and ideas. The best way is to use your favorite debugger to step through the disassembled binary.

Each time your bomb explodes it notifies the bomblab server, and you lose 1/32 point (up to a max of

2 points) in the final score for the lab. So there are minimal consequences to exploding the bomb. . . So

experiment!!

Each phase is worth 10 points, for a total of 60 points.

Although phases get progressively harder to defuse, the expertise you gain as you move from phase to

phase should offset this difficulty. However, the last phase will challenge even the best students, so please

don’t wait until the last minute to start.

The bomb ignores blank input lines. If you run your bomb with a command line argument, for example,

linux> ./bomb psol.txt

then it will read the input lines from psol.txt until it reaches EOF (end of file), and then switch over

to stdin. In a moment of weakness, Dr. Evil added this feature so you don’t have to keep retyping the

solutions to phases you have already defused.

To avoid accidentally detonating the bomb, you will need to learn how to single-step through the as-

sembly code and how to set breakpoints. You will also need to learn how to inspect both the registers and

the memory states. One of the nice side-effects of doing the lab is that you will get very good at using a

debugger. This is a crucial skill that will pay big dividends the rest of your career.

Logistics

As usual, you ARE to continue to work in your group.

Any clarifications and revisions to the assignment will be posted on the class Web page and email.

Any clarifications and revisions to the assignment will be posted on the class Web page and email.

Hand-In

There is no explicit hand-in. The bomb will notify your instructor automatically about your progress as you

work on it. You can keep track of how you are doing by looking at the class scoreboard at:

http://wilkes.cs.hmc.edu:15213/scoreboard

This web page is updated continuously to show the progress for each bomb.

Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever running the

program, and figure out exactly what it does. This is a useful technique, but it is not always easy to do. You

2



can also run it under a debugger, watch what it does step by step, and use this information to defuse it. This

is probably the fastest way of defusing it.

We do make one request, please do not use brute force! You could write a program that will try every

possible key to find the right one. But this is no good for several reasons:

• You lose 1/32 point (up to a max of 2 points) every time you guess incorrectly and the bomb explodes.

• Every time you guess wrong, a message is sent to the bomblab server. You could very quickly saturate

the network with these messages, and cause the system administrators to come find you. . .

• We haven’t told you how long the strings are, nor have we told you what characters are in them. Even

if you made the (incorrect) assumptions that they all are less than 80 characters long and only contain

letters, then you will have 2680 guesses for each phase. This will take a very long time to run, and you

will not get the answer before the assignment is due—or the universe ends.

There are many tools which are designed to help you figure out both how programs work, and what is

wrong when they don’t work. Here is a list of some of the tools you may find useful in analyzing your bomb,

and hints on how to use them.

• gdb

The GNU debugger is a command line tool available on virtually every platform. You can trace

through a program line by line, examine memory and registers, look at both the source code and

assembly code (we are not giving you the source code for most of your bomb), set breakpoints, set

memory watch points, and write scripts. Here are some tips for using gdb.

– To keep the bomb from blowing up every time you type in a wrong input, you’ll want to learn

how to set breakpoints.

– The CS:APP Student Site at

http://csapp.cs.cmu.edu/public/students.html

has a very handy single-page gdb summary that you can print out and use as a reference. Here

are some other tips for using gdb.

– For other documentation, type “help” at the gdb command prompt, or type “man gdb”, or

“info gdb” at a Unix prompt. Some people also like to run gdb under gdb-mode in emacs.

• objdump -t

This will print out the bomb’s symbol table. The symbol table includes the names of all functions and

global variables in the bomb, the names of all the functions the bomb calls, and their addresses. You

may learn something by looking at the function names!

• objdump -d

Use this to disassemble all of the code in the bomb. You can also just look at individual functions.

Reading the assembler code can tell you how the bomb works.

Although objdump -d gives you a lot of information, it doesn’t tell you the whole story. Calls to

system-level functions are displayed in a cryptic form. For example, a call to sscanf might appear

as:

3



8048c36: e8 99 fc ff ff call 80488d4 <_init+0x1a0>

To determine that the call was to sscanf, you would need to disassemble within gdb (possibly after

partially running the program).

• strings

This utility will display the printable strings in your bomb.

Looking for a particular tool? How about documentation? Don’t forget, the commands apropos, man,

and info are your friends. In particular, man ascii might come in useful. info gas will give you

more than you ever wanted to know about the GNU Assembler. Also, stay away from the web where there

may be posted solutions. If you get stumped, feel free to ask your grutor or professor for help.

One other useful fact: you will find that the bomb has many functions with descriptive names, such as

read six numbers. All functions do what their names say; Dr. Evil isn’t that evil. Also, remember that

sscanf is a built-in library function. Don’t try to reverse-engineer it unless you have several months to

spend; instead read the manual page.

4


