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Lecture 12: ROP & Review

January 27,2020 Chris Stone

Lab 3 (Bomb) Due 1:15pm Tomorrow

Lab 4 (Attack) Starts Tomorrow — New Partner!

Take-Home Midterm available by Spm Tomorrow Afternoon
(75-minute exam due Spm next Friday)
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Security: The Story So Far




Observation
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The program crashec

unix> ./bufdemo-nsp

Type a string:0123456789012345678901234
Segmentation Fault

because the code "returned" (jumped)

to address Ox400054, which didn't contain valid machine code.

And by typing in a caretully-chosen 32-character string,
we can make echo() 'return” (jump) to any address we want!



Code Injection Attacks

Input string includes bytes encoding machine code

Overwrite return address A with address of that code!

void P(){
Q();

}

Return

T address A

Stack before call to gets ()

int Q() {

gets(buf);

return ..

}

char buf[64];

°)

buf

N

>P stack frame <

Return address

>Q5tackframe <

Stack after callto gets ()

-

padding

exploit
code

----;\\\\.B

What happens
when Q returns?



2. Oystem-Level Protections can hel

* Non-executable code segments Stack after call to gets ()
* In previous x&6, could mark region of memory as )
either “read-only” or “writeable”. .. could execute P stack frame
anything readable
* X80-04 added explicit “execute” permission ar
* Stack marked as non-executable <
data written < pad
by gets()
exploit > Q stack frame
S code
y

Any attempt to execute this code will fail



Are We Still in Danger?

If the stack is marked "don't execute’
* we can't write machine code into the buffer and jump to it.
* but we can still overwrite the return address
* we can force a "return’ (jumpl) anywhere in the code that is running.

ls that really so bad?

Yes!



Question

There are lots of instructions in

a typical program.

Suppose that at address
Ox4 10000 there are two

consecutive instructions
45 ] ind %ebp
(=C3 retg

6UPPO66 we overwrite

the return address with
Ox410000.

What happens when
function Q returns?

return

buf

> Qstack frame

data written <
by gets()

B —o

Stack after call to gets ()

=

410000

pad

N

P stack frame

— %3

> Qstack frame
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Question 2

;i@l’;fgﬁp/fggr%fnlflﬂStl"UCthHS " (" 9 S\AQ& SZ—) ?ongj Stack after call to gets ()
' 3\

Suppose that at address m%\

0x410000 there are two A 410000

consecutive instructions \_’_/ywo@

O incl %ebp e | [ [#10000 y

O)CCS r‘etq data written
by gets () < pad

/]

P stack frame

Suppose we overwrite
the return address with e > Qotack frame
three copies of Ox4 10000 B—e

What happens when
function Q returns?

> Qstack frame




S
Return-Oriented Frogramming (ROF)

ldea:
* Find existing machine code instructions followed by retq
(These are called gadgets)

* Put a sequence of gadgets addresses on the stack.
(where the sequence of gadgets does our evil work)

The computer returns (jumps) from each gadget to the next!
* [T reads addresses from the stack, but executes code in the text segment.

But most of our retq instructions immediately follow addq $ ..., %rsp.
* Can attacker find enough gadgets to do evil? Y l



We don't need retqg; we need oxc3 !

Unintended instructions — ecb_crypt()

c’
45
d4

movl $0x00000001, - 01

44(%ebp) 88

00
fr
c/ ™

07
test $0x00000007, 00

%edi 00
00

of

add %dh, %bh

movl $0x0F000000,
(%edi)

setnzb -61(%ebp) { 95 xchg %ebp, Y%eax
R 45 } inc%ebp
JC3 } ret Q

https://www.blackhat.com/presentations/bh-usa-08/Shacha‘fm/BH_US_OS_Shacham_Retu rn_Oriented_Programming.pdf



Have Fun with Lab 4!



Review ToEics

* Bits * Mult/Div vs. Shifting * Implementing if, do, while

* And/Or/Not/Xor * |[EEE float & double loops using jumps & labels
Stack frames & %rsp

* Arithmetic & logical shifts ¢ Normal, special, and
denormal fp numbers

Return address

* Integers
* Unsigned ints * Memory vs. registers * Arrays, Structs, Unions
* 2'scomplement * Machine code vs. assembly * Padding/alignment
* Max/min values .
| ' | . %86 assembly Buffer overflows
* Negating a signed int e rithmetic * |dentifying

* Signed/unsighed compare * movq vs. leaq * Security implications
. . * Prevention techniques
* Zero- vs. sigh-extension companisons

. * condition codes
* Casting * conditional jumps

e Overflow « conditional moves
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