———
Lecture 12: ROP & Review

January 27,2020 Chris Stone

Lab 3 (Bomb) Due 1:15pm Tomorrow

Lab 4 (Attack) Starts Tomorrow — New Partner!

Take-Home Midterm available by Spm Tomorrow Afternoon
(75-minute exam due Spm next Friday)

ju—

Security: The Story So Far

Observation

Rest of stack frame

forcall echo

00

00

00

00

00

40

00

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

The program crashec

unix> ./bufdemo-nsp

Type a string:0123456789012345678901234
Segmentation Fault

because the code "returned" (jumped)

to address Ox400054, which didn't contain valid machine code.

And by typing in a caretully-chosen 32-character string,
we can make echo() 'return” (jump) to any address we want!

Code Injection Attacks

Input string includes bytes encoding machine code

Overwrite return address A with address of that code!

void P(){
Q();

}

Return

T address A

Stack before call to gets ()

int Q() {

gets(buf);

return ..

}

char buf[64];

°)

buf

N

>P stack frame <

Return address

>Q5tackframe <

Stack after callto gets ()

-

padding

exploit
code

----;\\\\.B

What happens
when Q returns?

2. Oystem-Level Protections can hel

* Non-executable code segments Stack after call to gets ()
* In previous x&6, could mark region of memory as)
either “read-only” or “writeable”. .. could execute P stack frame
anything readable
* X80-04 added explicit “execute” permission ar
* Stack marked as non-executable <
data written < pad
by gets()
exploit > Q stack frame
S code
y

Any attempt to execute this code will fail

Are We Still in Danger?

If the stack is marked "don't execute’
* we can't write machine code into the buffer and jump to it.
* but we can still overwrite the return address
* we can force a "return’ (jumpl) anywhere in the code that is running.

ls that really so bad?

Yes!

Question

There are lots of instructions in

a typical program.

Suppose that at address
Ox4 10000 there are two

consecutive instructions
45] ind %ebp
(=C3 retg

6UPPO66 we overwrite

the return address with
Ox410000.

What happens when
function Q returns?

return

buf

> Qstack frame

data written <
by gets()

B —o

Stack after call to gets ()

=

410000

pad

N

P stack frame

— %3

> Qstack frame

I E——
Question 2

;i@l’;fgﬁp/fggr%fnlflﬂStl"UCthHS " (" 9 S\AQ& SZ—) ?ongj Stack after call to gets ()
' 3\

Suppose that at address m%\

0x410000 there are two A 410000

consecutive instructions _’_/ywo@

O incl %ebp e | [[#10000 y

O)CCS r‘etq data written
by gets () < pad

/]

P stack frame

Suppose we overwrite
the return address with e > Qotack frame
three copies of Ox4 10000 B—e

What happens when
function Q returns?

> Qstack frame

S
Return-Oriented Frogramming (ROF)

ldea:
* Find existing machine code instructions followed by retq
(These are called gadgets)

* Put a sequence of gadgets addresses on the stack.
(where the sequence of gadgets does our evil work)

The computer returns (jumps) from each gadget to the next!
* [T reads addresses from the stack, but executes code in the text segment.

But most of our retq instructions immediately follow addq $..., %rsp.
* Can attacker find enough gadgets to do evil? Y l

We don't need retqg; we need oxc3 !

Unintended instructions — ecb_crypt()

c’
45
d4

movl $0x00000001, - 01

44(%ebp) 88

00
fr
c/ ™

07
test $0x00000007, 00

%edi 00
00

of

add %dh, %bh

movl $0x0F000000,
(%edi)

setnzb -61(%ebp) { 95 xchg %ebp, Y%eax
R 45 } inc%ebp
JC3 } ret Q

https://www.blackhat.com/presentations/bh-usa-08/Shacha‘fm/BH_US_OS_Shacham_Retu rn_Oriented_Programming.pdf

Have Fun with Lab 4!

Review ToEics

* Bits * Mult/Div vs. Shifting * Implementing if, do, while

* And/Or/Not/Xor * |[EEE float & double loops using jumps & labels
Stack frames & %rsp

* Arithmetic & logical shifts ¢ Normal, special, and
denormal fp numbers

Return address

* Integers
* Unsigned ints * Memory vs. registers * Arrays, Structs, Unions
* 2'scomplement * Machine code vs. assembly * Padding/alignment
* Max/min values .
| ' | . %86 assembly Buffer overflows
* Negating a signed int e rithmetic * |dentifying

* Signed/unsighed compare * movq vs. leaq * Security implications
. . * Prevention techniques
* Zero- vs. sigh-extension companisons

. * condition codes
* Casting * conditional jumps

e Overflow « conditional moves

/ n bk
I«C xzO /"[f/'/\"x =~ O UV\NEHCJ S (aed
. . N\
e fr ¥ W 93%‘J Umm:Z -} =2 -
_\2Y Sx 217 : .
— - O
. /_,_— »
‘\x X = O ’H‘QV\ -x 20 >< UVVIMJ =0 ‘MEV":-—Z

g

<

Ve B+
SQ%O’ $m/ 73"353
(gdcl ‘Xm) C?o/SP
e

[(Z(f" o N2 q “JE — mm{m a”owch
v S 7 - "(‘D DUSQ;GWU-Q)Q w/@
PU’H\"'j Hon Lo\
e b g g B By
A He w& ValkRy
Ll Lede

m%w.

F[oav’ﬁ) e | weckse | S""ﬁj frecisie L& EJZIZ

ok

W ¢ \Ta ¢
\ X
- @
'!———\(la[“a)v 1\) DY
DQWWDJ)S l/@ pgfosa” ¥ L Sl
N rd

“L\ 6\?4 = OOV - EO /xz

Sf?ecfka ('\? e*l"J = /-)
_+Oﬂ OA Na/\j O{FPPMJ reng (7] /740%7;530

o) b

Sheds 4 aligumend Gl s ¥ bk piwiie data

/3 — Sodd Jive o a an ddess
S CAC‘)/OW S lQ SWO\ : (‘\-LCA~ T QWU)’J-I;D)Q 0'7[\ \)
\l/k) E} ”)\ g/ d\: r <)~l\ qu_‘a .
' nlice < (Pqu v
> e 5 bk e
5‘4""0’}1; / 9:&6’}' - S%wd% o)) e /F[O‘CCJ
Chov C U

(v} ~,.)/‘ @m;%b H%%T\?)SO *}LQB y[qmlfrjr a e aowve;
chor c\) [mu)%)oje Oﬁﬁ B‘/)&/)
S/ gf\‘wu;‘ ?
C(i‘;j)} E)cf ZI@I)_&L\]

{‘meﬁ N

j

