
Lecture 12: ROP & Review
January 27, 2020 Chris Stone

Lab 3 (Bomb) Due 1:15pm Tomorrow

Lab 4 (Attack) Starts Tomorrow — New Partner!
Take-Home Midterm available by 5pm Tomorrow Afternoon

(75-minute exam due 5pm next Friday)

Security: The Story So Far

Observation
Rest of stack frame

for call_echo

Return AddressReturn Address00 00 00 00 00 40 00 34

buf[3] buf[2] 31 30bu[3] [2] [1] 3033 32 31 3037 36 35 34
31 30 39 3835 34 33 32
39 38 37 3633 32 31 30

unix> ./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

The program crashed because the code "returned" (jumped)
to address 0x400034, which didn't contain valid machine code.

And by typing in a carefully-chosen 32-character string,
we can make echo() "return" (jump) to any address we want!

Code Injection Attacks
Input string includes bytes encoding machine code
Overwrite return address A with address of that code!

int Q() {
char buf[64];
gets(buf);
...
return ...;

}

Stack after call to gets()

B

exploit
code

padding

What happens
when Q returns?

B

void P(){
Q();
...

}

Return
address A

Stack before call to gets()

A

Q stack frame
buf

Return address

P stack frame

2. System-Level Protections can help
• Non-executable code segments

• In previous x86, could mark region of memory as
either “read-only” or “writeable”… could execute
anything readable

• X86-64 added explicit “execute” permission
• Stack marked as non-executable

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

Are We Still in Danger?
If the stack is marked "don't execute"
• we can't write machine code into the buffer and jump to it.
• but we can still overwrite the return address
• we can force a "return" (jump!) anywhere in the code that is running.

Is that really so bad?

Yes!

Question 1
There are lots of instructions in
a typical program.
Suppose that at address
0x410000 there are two
consecutive instructions

inc %ebp
ret

Suppose we overwrite
the return address with
0x410000.
What happens when
function Q returns?

return

Q stack frame
buf

Stack after call to gets()

410000

P stack frame

Q stack frame

B

pad
data written
by gets()

Question 2
There are lots of instructions in
a typical program.
Suppose that at address
0x410000 there are two
consecutive instructions

incl %ebp
retq

Suppose we overwrite
the return address with
three copies of 0x410000
What happens when
function Q returns?

return

Q stack frame
buf

Stack after call to gets()

410000

P stack frame

Q stack frame

B

pad
data written
by gets()

410000

410000

Return-Oriented Programming (ROP)
Idea:
• Find existing machine code instructions followed by retq

(These are called gadgets)
• Put a sequence of gadgets addresses on the stack.

(where the sequence of gadgets does our evil work)

The computer returns (jumps) from each gadget to the next!
• It reads addresses from the stack, but executes code in the text segment.

But most of our retq instructions immediately follow addq $..., %rsp.
• Can attacker find enough gadgets to do evil? Yes!

We don't need retq; we need 0xc3 !

https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf

Unintended instructions — ecb crypt()Unintended instructions ecb_crypt()

c7
4545
d4
01
00
00

movl $0x00000001, -
44(%ebp)

00
00
f7
c7

add %dh, %bh

07
00
00
00

test $0x00000007,
%edi movl $0x0F000000,

(%edi)
00
0f
95
45setnzb -61(%ebp)

xchg %ebp, %eax
inc%ebp}

}

ret}c3
}

Have Fun with Lab 4!

Review Topics
• Bits

• And/Or/Not/Xor

• Arithmetic & logical shifts

• Integers
• Unsigned ints
• 2's complement
• Max/min values

• Negating a signed int

• Signed/unsigned compare

• Zero- vs. sign-extension

• Casting

• Overflow

• Mult/Div vs. Shifting

• IEEE float & double

• Normal, special, and
denormal fp numbers

• Memory vs. registers

• Machine code vs. assembly

• x86 assembly
• arithmetic
• movq vs. leaq
• comparisons
• condition codes
• conditional jumps
• conditional moves

• Implementing if, do, while
loops using jumps & labels

• Stack frames & %rsp

• Return address

• Arrays, Structs, Unions
• Padding/alignment

• Buffer overflows
• Identifying
• Security implications
• Prevention techniques

4,

