CS 105

HAC, €5y
O

Dealing With I/O

O
“Tour of the Black Holes of Computing” Problem: I/O devices are slow
Solution 1: wait for /0
. m CPU stops executing instructions until device gives answer
Exceptional Control Flow _ ,
Solution 2: polling
= Keep computing something else while I/O is happening
Topics m Every so often, check to see whether I/O is done
" :?‘ce"lﬁms Solution 3: interrupts
: Slhger;lass n Keep computing something else while 1/0 is happening
m Device eventually interrupts CPU to tell it /O is done
P CS 105
HNC. CSy HNC. CS3y
. - ;] 1
Dealing With Errors Bl Control Flow ‘B3
©) ©)
How to handle bad mistakes like divide by 0?

Solution 1: ignore completely
Solution 2: set a flag and let program check

m Used for minor errors like integer overflow

= Nuisance to check after every important operation (e.g., division)
Solution 2: interrupts

m Let CPU notify program in a special way when bad things happen
m Mechanism can be (nearly) identical to that used for /0

CS 105

Computers do only one thing

= From startup to shutdown, a CPU simply reads and executes (interprets) a
sequence of instructions, one at a time

m This sequence is the system’s physical control flow (or flow of control)

Physical control flow
<startup>
Time inst,
inst,
inst;
inst,
<shutdown>

CS 105

HAC, 5y
=

HAC, €5y
O

Altering the Control Flow Ed Exceptional Control Flow '3
©) ©)
Up to now: two mechanisms for changing control flow: = Exists at all levels of a computer system
= Jumps and branches—react to changes in program state Low-Level Mechanism
m Call and return using stack discipline—react to program state = Exceptions
Insufficient for a useful system e Change in control flow in response to a system event (i.e., change in system state)
= Difficult for the CPU to react to other changes in system state = Combination of hardware and OS software
® Data arrives from a disk or a network adapter Higher-Level Mechanisms
o Instruction divides by zero . .
e User hits control-C at the keyboard n Process context switch (done by OS software and HW timer)
o System timer expires = Signals (done by OS software)
B « N ’ = Nonlocal jumps (throw/catch)—ignored in this course
System needs mechanisms for “exceptional control flow
-5- CS 105 —6- CS 105
HNC. €5y HNC. €5y
- ;] - 1
Exceptions Exception Tables (Interrupt Vectors) {7
©) ©)
An exception is a transfer of control to OS kernel in response to some
event (i.e., change in processor state) Excelftion
numbers
Exceptions interrupt the normal control flow = Each type of event has a unique
code for .
User Process 0s exception number k
interrupt —odetor m k = index into exception table
event —— current l Exception vect:(zr (ak.a., interrupt vector)
next Exception processing ? r'e code for u Jump_ table entry. k points to a
by exception handler 2 — ption handler 2 function (exception handler).

* Return to current
* Return to next
« Orabort & never return

Think of it as a hardware-initiated function call

7= CS 105

= Handler k is called each time
exception k occurs.

code for
exception handler n-1

_8- CS 105

HAC, 5y
=

Asynchronous Exceptions (Interrupts) Sk

Caused by events external to processor
= Indicated by putting voltage on the processor’s interrupt pin(s)
m Handler returns to “next” instruction.

Examples:
m Timer interrupt
e Every few milliseconds, triggered by external timer chip
e Used by kernel to take control back from user programs
u |/O interrupts
e Hitting control-C (or any key) at the keyboard
e Arrival of packet from network
® Finishing writing data to disk

Synchronous Exceptions

Caused by events that occur as result of executing an instruction:
n Traps
® Intentional
e Examples: system calls, breakpoint traps, special instructions
e Returns control to “next” instruction
= Faults
e Unintentional but possibly recoverable
e Examples: page faults (recoverable), protection faults (unrecoverable)
e Either re-executes faulting (“current”) instruction or aborts
m Aborts
e Unintentional and unrecoverable
e Examples: parity error, machine fails ongoing self-tests
e Aborts current program or entire OS

HAC, €5y
O

-9- Cs 105 -10- Cs 105
HNC. €5y HNC. €5y
;] - 1
System Call Example B Fault Example: Invalid Memory)
User calls: open (filename, options)))
i ich i i i Memory Reference £t QlEelf
Calls __open function, which invokes system call instruction syscall y pain ()
00000000000e5d70 <__open>: = User writes to memory location { 15000] = 13
. . 5 - 13;
u Address is not vali 2 ;
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2 ddress is not valid }
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 £0 ff ff cmp S$SOXEEEEEEEEEEE££001, Srax | 80483b7: <7 05 60 e3 04 08 0d movl $0xd, 0x804e360 |
eSdfa: o3 retq = Virtual memory system detects invalid address, causes fault
= OS sends SIGSEGV signal to user process (discussed in a few minutes)
User code Kernel code u Srax contains syscall number m User process exits with “segmentation fault
m Other arguments in $rdi, $rsi, User Process os
sym”l Exception $rdx, ferlO,l %r8,%r9
cmp m Returnvaluein $rax page fault
‘\l Openfie m Negative value is an error event * movl ~pagelaut) !
Returns corresponding to negative errno Detect invalid address
— Signal process
—13- Cs 105 —15— Cs 105

HAC, 5y
=

HAC, €5y
O

ECF Exists at All Levels of a System Ed Killing a Process '3
©) ©)
Exceptions Problem: runaway process (e.g., unintentional infinite loop)
= Hardware and operating system kernel software m Solution: kernel has superpowers, can kill it off
Concurrent processes Problem: cleaning up after killing process
= Hardware timer and kernel software m Kernel can close open files, release memory, etc.
Si m Kernel can’t know whether to delete temporary files or send “bye-bye” message
gnals
across network
m Kernel software
. . . . Solution: let processes intercept attempt to kill
Non-local jumps (ignored in this class) N ; .
m Assumption is that they will clean up and exit gracefully
m Application code i i
Rk . = No direct enforcement of that assumption!
= Unsupported in C (except for horrible set jmp hack)
m C++/Java throw/catch
m Python try/except
-16- CS 105 -17- CS 105
HNC. €5y HNC. €5y
- ;] - - 1
Signals Sk Signal Concepts: Sending {7
©)

A signal is a small “message” that notifies a process that an event of some
type has occurred in the system

m Kernel abstraction for exceptions and interrupts

= Sent from kernel (sometimes at request of another process) to a process
m Different signals are identified by small integer IDs

= Only information in a signal is its ID and fact of arrival

= Represented internally by one bit in kernel

ID Name Default Action Corresponding Event
2 [SIGINT | Terminate Interrupt from keyboard (ct1-c)
9 | SIGKILL | Terminate Kill program (cannot override or ignore)
11 | SIGSEGV | Terminate & Dump | Segmentation violation
14 | SIGALRM | Terminate Timer signal
17 | SIGCHLD | Ignore Child stopped or terminated
—18— CS 105

©)
Kernel sends (delivers) a signal to a destination process by updating some
state in the context of the destination process
Kernel sends a signal for one of the following reasons:

m Kernel has detected a system event such as divide by zero (SIGFPE) or termination
of a child process (SIGCHLD)

m Another process has invoked the kill system call to explicitly request that the
kernel send a signal to the destination process

—19— CS 105

HNC. €5y
- - - 1
Signal Concepts: Receiving *E3
©)

A destination process receives a signal when it is forced by kernel to react

in some way to delivery of the signal
Five possible ways to react:

m [gnore the signal (do nothing)

m Terminate the process

m Temporarily stop the process from running

m Continue a stopped process (let it run again)

m Catch the signal by executing a user-level function called a signal handler
e OS-initiated function call
e Akin to hardware exception handler being called in response to asynchronous interrupt
o Like interrupts, signal handler might or might not return

—20— CS 105

Signal Concepts: Pending & Blocked Signals

A signal is pending if it has been sent but not yet received
= There can be at most one pending signal of any particular type
= Important: signals are not queued

o If a process has pending signal of type k, then subsequent signals of type k for that
process are discarded

Process can block receipt of certain signals
= Blocked signals can be delivered, but won’t be received until signal is unblocked

Pending signal is received at most once

-21- CS 105

HC_ Sy

HNC. €5y
Receiving Signals 'E3
©)
Suppose kernel is returning from an exception handler and is ready to
pass control to process p

Process A

user code
kernel code } context switch
Time user code
kernel code } context switch

user code

Important: All context switches are initiated by calling some exception handler, e.g. timer.

-23- CS 105

Receiving Signals
Suppose kernel is returning from exception handler and is ready to pass
control to process p

Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process p

If (pnb == 0)
m Pass control to next instruction in logical flow for p
Else

m Choose lowest-numbered signal k in pnb and force process p to receive signal k
= Receipt of signal triggers some action by p

m Repeat for all nonzero kin pnb

m Pass control to next instruction in logical flow for p

—24— CS 105

HNC. C8yy
5

o

Sending Signals with kill

kill sends arbitrary signal to a
process or process group linux> ./forks 16

HAC, 5y
=

linux> Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

Examples linux> ps
m kill -KILL 24818 PID TTY TIME
24788 pts/2 00:00:00
® Send SIGKILL to process 24818 24818 pts/2 00:00:02
m kill -9 -24817 24819 pts/2 00:00:02
24820 pts/2 00:00:00

® Send SIGKILL to every process in

linux> kill -9 -24817
process group 24817

linux> ps

PID TTY TIME
24788 pts/2 00:00:00
24823 pts/2 00:00:00
linux>

— 26—

CS 105

HAC, €5y
O

Sending Signals From the Keyboard

Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the foreground process
group.
m SIGINT - default action is to terminate each process
m SIGTSTP - default action is to stop (suspend) each process

Background Background
process process
group 32 group 40
Foreground
process group 20
27— CS 105

Sending Signals with kill

void forkl2()
{
pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop (bad style!) */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {

ERBES ess %d\n", pid[il);
kill (pid[i], SIGINT),
}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {
pid_t wpid = wait (schild status);
if (WIFEXITED (child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child_status));
else
printf ("Child %d terminated abnormally\n", wpid);

—29-—

HNC. C8yy
5

o

CS 105

HNC. €5y
Default Actions : o
Each signal type has predefined default action, which is one of:
m Process terminates

m Process terminates and dumps “core” (memory) to a file
o Nowadays dump is suppressed in normal operation

m Process stops until restarted by a SIGCONT signal
m Process ignores the signal

—30— CS 105

HAC, 5y
=

Installing Signal Handlers o
The signal function modifies the default action associated with receipt of
signal signum:

® handler_t *signal(int signum, handler_t *handler)

Different values for handler:
= SIG_IGN: ignore signals of type signum
m SIG_DFL: revert to default action on receipt of signals of type signum
m Otherwise, handler is address of a signal handler
o Referred to as “installing” the handler
e Called when process receives signal of type signum
e Executing handler is called “catching” or “handling” the signal

o When handler returns, control passes back to instruction in control flow of process that
was interrupted by receipt of the signal

31— CS 105

Signal Handling Example

HAC, €5y
O

void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);
}

int main()

sigset_t blocks;

sigemptyset(&blocks);

sigaddset(&blocks, SIGINT);

/* Install the SIGINT handler */

sigprocmask(SIG_BLOCK, &blocks, NULL);

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, sigint_handler);

sigprocmask(SIG_UNBLOCK, &blocks, NULL);

/* Wait for the receipt of a signal */

pause();

return 0;

-32-

sigint.c

S 105

HNC. C8yy
5

Signals Handlers as Concurrent Flows BT
o
A signal handler is a separate logical flow (not process) that runs
concurrently with the main program

Process A Process A Process B

while (1) handler () {

}

Time

—33-— CS 105

Guidelines for Writing Safe Handlers

GO: Keep your handlers as simple as possible
= e.g., Set a global flag and return
G1: Call only async-signal-safe functions in your handlers
m printf, sprintf, malloc,and exit are not safe!
G2: Save and restore errno on entry and exit
m So that other handlers don’t overwrite your value of errno
G3: Protect accesses to shared data structures by temporarily blocking all signals.
m To prevent possible corruption
G4: Declare global variables as volatile
= To prevent compiler from storing them in a register
G5: Declare global flags as volatile sig_atomic_t
m flag: variable that is only read or only written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals

—38—

HNC. C8yy
5

o

CS 105

HAC. 8y
)

Shell Programs 2
©)
A shellis an application program that runs programs on behalf of the user

= sh - Original Unix Bourne shell

m csh — BSD Unix C shell, tesh - Enhanced C shell (both deprecated)

= bash - “Bourne-Again” shell

m zsh - “Z” shell

int main()
{
char cmdline[MAXLINE];

while (1) {

oo 5B Execution is a sequence of
printf ("> ");
Fgets (cmdline, MAXLINE, stdin); read/evaluate steps
if (feof (stdin))
exit (0);

/* evaluate */
eval (cmdline) ;
—40- } CS 105

HAC, €5y
O

Simple Shell eval Function

void eval (char *cmdline)
{

char *argv[MAXARGS]; /* argv for execvp() */

int bg; /* should the job run in bg or £g? */
pid_t pid; /* process id */

bg = parseline (cmdline, argv);

if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
execvp (argv[0], argv);
fprintf (stderr, "%s: Command not found.\n", argv[0]);

exit (1);
}

if (!'bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) == -1)
unix_error ("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */
printf("%d %s", pid, cmdline);

—41 - CS 105

HNC. C8yy
5

Problem with Simple Shell Example bl
©)
Shell correctly waits for and reaps foreground jobs
But what about background jobs?
u Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Eventually you hit process limit and can’t do any work
ECF to the rescue:
m SIGCHLD will notify us of child termination
= Ignored by default, so must explicitly catch
m But signal handler must be carefully written (see next two slides)

—42— CS 105

HNC. C8yy
5

Signal Handler Funkiness

int ccount = 0;
void child handler (int sig)
{

T Pending signals are not
pid_t pid = wait (&child_status); queued
ccount——;
printf("Received signal %d from process %d\n", m For each signal type, just have
) ey GRS single bit indicating whether or
not signal is pending
void forkld () . "
{ = Even if multiple processes
pid_t pid[N]; have sent this signal!
int i, child_status;

ccount = N;
signal (SIGCHLD, child_handler);
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Exit */
exit (0);

while (ccount > 0)
pause () ; /* Suspend until signal occurs */

— 43— CS 105

HAC, 5y
=

Living With Nonqueuing Signals =

Must check for all terminated jobs
= Typically loop with waitpid

void child_handler2 (int sig)
{
int child_status;
pid_t pid;
while ((pid = waitpid(-1, &child status, WNOHANG)) != -1) {
ccount——;
printf ("Received signal %d from process %d\n",

sig, pid);
}

void forkl5()
{

signal (SIGCHLD, child_handler2);

—44 - CS 105

HAC, €5y
O

Summary

Signals provide process-level exception handling
= Can generate from user programs

m Can define effect by declaring signal handler

Some caveats
m Very high overhead
e >10,000 clock cycles
e Only use for exceptional conditions
= Don’t have queues
o Just one bit for each pending signal type

45— CS 105

