
Exceptional Control FlowExceptional Control Flow

Topics

✁ Exceptions

✁ Signals

✁ Shells

CS 105
“Tour of the Black Holes of Computing”

– 2 – CS 105

Dealing With I/ODealing With I/O

Problem: I/O devices are slow

Solution 1: wait for I/O

✁ CPU stops executing instructions until device gives answer

Solution 2: polling

✁ Keep computing something else while I/O is happening

✁ Every so often, check to see whether I/O is done

Solution 3: interrupts

✁ Keep computing something else while I/O is happening

✁ Device eventually interrupts CPU to tell it I/O is done

– 3 – CS 105

Dealing With ErrorsDealing With Errors

How to handle bad mistakes like divide by 0?

Solution 1: ignore completely

Solution 2: set a flag and let program check

✁ Used for minor errors like integer overflow

✁ Nuisance to check after every important operation (e.g., division)

Solution 2: interrupts

✁ Let CPU notify program in a special way when bad things happen

✁ Mechanism can be (nearly) identical to that used for I/O

– 4 – CS 105

Control FlowControl Flow

Computers do only one thing

✁ From startup to shutdown, a CPU simply reads and executes (interprets) a
sequence of instructions, one at a time

✁ This sequence is the system’s physical control flow (or flow of control)

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

Physical control flow

Time

– 5 – CS 105

Altering the Control FlowAltering the Control Flow

Up to now: two mechanisms for changing control flow:

✁ Jumps and branches—react to changes in program state

✁ Call and return using stack discipline—react to program state

Insufficient for a useful system

✁ Difficult for the CPU to react to other changes in system state
� Data arrives from a disk or a network adapter

� Instruction divides by zero

� User hits control-C at the keyboard

� System timer expires

System needs mechanisms for “exceptional control flow”

– 6 – CS 105

Exceptional Control FlowExceptional Control Flow

✁ Exists at all levels of a computer system

Low-Level Mechanism

✁ Exceptions
� Change in control flow in response to a system event (i.e., change in system state)

✁ Combination of hardware and OS software

Higher-Level Mechanisms

✁ Process context switch (done by OS software and HW timer)

✁ Signals (done by OS software)

✁ Nonlocal jumps (throw/catch)—ignored in this course

– 7 – CS 105

ExceptionsExceptions

An exception is a transfer of control to OS kernel in response to some
event (i.e., change in processor state)

Exceptions interrupt the normal control flow

User Process OS

Exception
Exception processing
by exception handler

• Return to current
• Return to next
• Or abort & never return

event current
next

Think of it as a hardware-initiated function call

– 8 – CS 105

0
1

2

n-1

...

Exception Tables (Interrupt Vectors)Exception Tables (Interrupt Vectors)

✁ Each type of event has a unique
exception number k

✁ k = index into exception table
(a.k.a., interrupt vector)

✁ Jump table entry k points to a
function (exception handler).

✁ Handler k is called each time
exception k occurs.

interrupt
vector

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

– 9 – CS 105

Asynchronous Exceptions (Interrupts)Asynchronous Exceptions (Interrupts)

Caused by events external to processor

✁ Indicated by putting voltage on the processor’s interrupt pin(s)

✁ Handler returns to “next” instruction.

Examples:

✁ Timer interrupt
� Every few milliseconds, triggered by external timer chip

� Used by kernel to take control back from user programs

✁ I/O interrupts

� Hitting control-C (or any key) at the keyboard

� Arrival of packet from network

� Finishing writing data to disk

– 10 – CS 105

Synchronous ExceptionsSynchronous Exceptions

Caused by events that occur as result of executing an instruction:

✁ Traps
� Intentional

� Examples: system calls, breakpoint traps, special instructions

� Returns control to “next” instruction

✁ Faults

� Unintentional but possibly recoverable

� Examples: page faults (recoverable), protection faults (unrecoverable)

� Either re-executes faulting (“current”) instruction or aborts

✁ Aborts
� Unintentional and unrecoverable

� Examples: parity error, machine fails ongoing self-tests

� Aborts current program or entire OS

– 13 – CS 105

System Call ExampleSystem Call Example
User calls: open(filename, options)

Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

��������� 	��
�������

��������	

��	���
�

�����	�

✁ ✂ ✁ ✄ ☎ ✆ ✆

✄ ✝ ✞

� %rax ����������	���

 ���
��

� �������������������%rdi��%rsi��

%rdx��%r10��%r8��%r9

� ���������
������%rax

� �����������
���������������

��������������������������errno

– 15 – CS 105

Fault Example: Invalid MemoryFault Example: Invalid Memory

Memory Reference

✁ User writes to memory location

✁ Address is not valid

✁ Virtual memory system detects invalid address, causes fault

✁ OS sends SIGSEGV signal to user process (discussed in a few minutes)

✁ User process exits with “segmentation fault”

User Process OS

page fault

Detect invalid address

event
movl

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Signal process

– 16 – CS 105

ECF Exists at All Levels of a SystemECF Exists at All Levels of a System

Exceptions

✁ Hardware and operating system kernel software

Concurrent processes

✁ Hardware timer and kernel software

Signals

✁ Kernel software

Non-local jumps (ignored in this class)

✁ Application code

✁ Unsupported in C (except for horrible setjmp hack)

✁ C++/Java throw/catch

✁ Python try/except

– 17 – CS 105

Killing a ProcessKilling a Process

Problem: runaway process (e.g., unintentional infinite loop)

✁ Solution: kernel has superpowers, can kill it off

Problem: cleaning up after killing process

✁ Kernel can close open files, release memory, etc.

✁ Kernel can’t know whether to delete temporary files or send “bye-bye” message
across network

Solution: let processes intercept attempt to kill

✁ Assumption is that they will clean up and exit gracefully

✁ No direct enforcement of that assumption!

– 18 – CS 105

SignalsSignals

A signal is a small “message” that notifies a process that an event of some
type has occurred in the system

✁ Kernel abstraction for exceptions and interrupts

✁ Sent from kernel (sometimes at request of another process) to a process

✁ Different signals are identified by small integer IDs

✁ Only information in a signal is its ID and fact of arrival

✁ Represented internally by one bit in kernel

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt from keyboard (ctl-c)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

– 19 – CS 105

Signal Concepts: Sending Signal Concepts: Sending

Kernel sends (delivers) a signal to a destination process by updating some
state in the context of the destination process

Kernel sends a signal for one of the following reasons:

✁ Kernel has detected a system event such as divide by zero (SIGFPE) or termination
of a child process (SIGCHLD)

✁ Another process has invoked the kill system call to explicitly request that the

kernel send a signal to the destination process

– 20 – CS 105

Signal Concepts: ReceivingSignal Concepts: Receiving

A destination process receives a signal when it is forced by kernel to react
in some way to delivery of the signal

Five possible ways to react:

✁ Ignore the signal (do nothing)

✁ Terminate the process

✁ Temporarily stop the process from running

✁ Continue a stopped process (let it run again)

✁ Catch the signal by executing a user-level function called a signal handler
� OS-initiated function call

� Akin to hardware exception handler being called in response to asynchronous interrupt

� Like interrupts, signal handler might or might not return

– 21 – CS 105

Signal Concepts: Pending & Blocked SignalsSignal Concepts: Pending & Blocked Signals

A signal is pending if it has been sent but not yet received

✁ There can be at most one pending signal of any particular type

✁ Important: signals are not queued
� If a process has pending signal of type k, then subsequent signals of type k for that

process are discarded

Process can block receipt of certain signals

✁ Blocked signals can be delivered, but won’t be received until signal is unblocked

Pending signal is received at most once

– 23 – CS 105

Receiving SignalsReceiving Signals

Suppose kernel is returning from an exception handler and is ready to
pass control to process p

��������
 ���������

���������

	��
�������

���������

	��
�������

���������

���������	
���

���������	
���

����

�����	
�	�
���
���	��	
���	����

��
���	�
	��
��
�
�����
����
�����	���
�
������
����
	�����

– 24 – CS 105

Receiving SignalsReceiving Signals

Suppose kernel is returning from exception handler and is ready to pass
control to process p

Kernel computes pnb = pending & ~blocked

✁ The set of pending nonblocked signals for process p

If (pnb == 0)

✁ Pass control to next instruction in logical flow for p

Else

✁ Choose lowest-numbered signal k in pnb and force process p to receive signal k

✁ Receipt of signal triggers some action by p

✁ Repeat for all nonzero k in pnb

✁ Pass control to next instruction in logical flow for p

– 26 – CS 105

Sending Signals with killSending Signals with kill

kill sends arbitrary signal to a
process or process group

Examples

✁ kill –KILL 24818

� Send SIGKILL to process 24818

✁ kill –9 –24817

� Send SIGKILL to every process in

process group 24817

linux> ./forks 16

linux> Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 zsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> kill -9 -24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 zsh

24823 pts/2 00:00:00 ps

linux>

– 27 – CS 105

Sending Signals From the KeyboardSending Signals From the Keyboard

Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the foreground process
group.

✁ SIGINT – default action is to terminate each process

✁ SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground

process group 20

Background

process

group 32

Background

process

group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

– 29 – CS 105

Sending Signals with killSending Signals with kill
void fork12()

{

pid_t pid[N];

int i, child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

while(1); /* Child infinite loop (bad style!) */

/* Parent terminates the child processes */

for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);

}

/* Parent reaps terminated children */

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

}

– 30 – CS 105

Default ActionsDefault Actions

Each signal type has predefined default action, which is one of:

✁ Process terminates

✁ Process terminates and dumps “core” (memory) to a file
� Nowadays dump is suppressed in normal operation

✁ Process stops until restarted by a SIGCONT signal

✁ Process ignores the signal

– 31 – CS 105

Installing Signal HandlersInstalling Signal Handlers

The signal function modifies the default action associated with receipt of
signal signum:

✁ handler_t *signal(int signum, handler_t *handler)

Different values for handler:

✁ SIG_IGN: ignore signals of type signum

✁ SIG_DFL: revert to default action on receipt of signals of type signum

✁ Otherwise, handler is address of a signal handler

� Referred to as “installing” the handler

� Called when process receives signal of type signum

� Executing handler is called “catching” or “handling” the signal

� When handler returns, control passes back to instruction in control flow of process that

was interrupted by receipt of the signal

– 32 – CS 105

Signal Handling ExampleSignal Handling Example
��
���
�

����
�����

� �
���������������
�������
�
��

������� �����

	� �����
����������!�"!�#
�������$�%���� ��&'
��(
������)�(
��

����*���+++��(
��������������(
������,�(
��

����-.+�/$�'
��(
�0
��1�(

2

��"�

��
�
�
������ !���	�(
�
��"�� ����3!���	��(
�
��������3!���	�%��������(
����
�������������������
�������
�
�����"��	�����45-6.%�3!���	�%��755�(

����
�
���������%����������89���������
�
�
���������%��
�

����
�����(

�
�����"��	�����7�45-6.%�3!���	�%��755�(
���*�
��������������
���������
�
�����
�������(
�����
�1(

2
�����	��

– 33 – CS 105

Signals Handlers as Concurrent FlowsSignals Handlers as Concurrent Flows

A signal handler is a separate logical flow (not process) that runs
concurrently with the main program

�
��������

while (1)

;

�
�������

handler(){

…

}

�
�������

����

– 38 – CS 105

Guidelines for Writing Safe HandlersGuidelines for Writing Safe Handlers

G0: Keep your handlers as simple as possible

✁ e.g., Set a global flag and return

G1: Call only async-signal-safe functions in your handlers

✁ printf, sprintf, malloc, and exit are not safe!

G2: Save and restore errno on entry and exit

✁ So that other handlers don’t overwrite your value of errno

G3: Protect accesses to shared data structures by temporarily blocking all signals.

✁ To prevent possible corruption

G4: Declare global variables as volatile

✁ To prevent compiler from storing them in a register

G5: Declare global flags as volatile sig_atomic_t

✁ flag: variable that is only read or only written (e.g. flag = 1, not flag++)

✁ Flag declared this way does not need to be protected like other globals

– 40 – CS 105

Shell ProgramsShell Programs

A shell is an application program that runs programs on behalf of the user

✁ sh – Original Unix Bourne shell

✁ csh – BSD Unix C shell, tcsh – Enhanced C shell (both deprecated)

✁ bash – “Bourne-Again” shell

✁ zsh – “Z” shell

int main()
{

char cmdline[MAXLINE];

while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))

exit(0);

/* evaluate */
eval(cmdline);

}
}

Execution is a sequence of
read/evaluate steps

– 41 – CS 105

Simple Shell eval FunctionSimple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* argv for execvp() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
execvp(argv[0], argv);
fprintf(stderr, "%s: Command not found.\n", argv[0]);
exit(1);

}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) == -1)

unix_error("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */

printf("%d %s", pid, cmdline);
}

}

– 42 – CS 105

Problem with Simple Shell ExampleProblem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs

But what about background jobs?

✁ Will become zombies when they terminate

✁ Will never be reaped because shell (typically) will not terminate

✁ Eventually you hit process limit and can’t do any work

ECF to the rescue:

✁ SIGCHLD will notify us of child termination

✁ Ignored by default, so must explicitly catch

✁ But signal handler must be carefully written (see next two slides)

– 43 – CS 105

Signal Handler FunkinessSignal Handler Funkiness

Pending signals are not
queued

✁ For each signal type, just have
single bit indicating whether or
not signal is pending

✁ Even if multiple processes
have sent this signal!

int ccount = 0;

void child_handler(int sig)

{

int child_status;

pid_t pid = wait(&child_status);

ccount--;

printf("Received signal %d from process %d\n",

sig, pid);

}

void fork14()

{

pid_t pid[N];

int i, child_status;

ccount = N;

signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

/* Child: Exit */

exit(0);

}

while (ccount > 0)

pause();/* Suspend until signal occurs */

}

– 44 – CS 105

Living With Nonqueuing SignalsLiving With Nonqueuing Signals

Must check for all terminated jobs

✁ Typically loop with waitpid

void child_handler2(int sig)

{

int child_status;

pid_t pid;

while ((pid = waitpid(-1, &child_status, WNOHANG)) != -1) {

ccount--;

printf("Received signal %d from process %d\n",

sig, pid);

}

}

void fork15()

{

. . .

signal(SIGCHLD, child_handler2);

. . .

}

– 45 – CS 105

SummarySummary

Signals provide process-level exception handling

✁ Can generate from user programs

✁ Can define effect by declaring signal handler

Some caveats

✁ Very high overhead
� >10,000 clock cycles

� Only use for exceptional conditions

✁ Don’t have queues

� Just one bit for each pending signal type

