
Input and OutputInput and Output

Topics

✁ I/O hardware

✁ Unix file abstraction

✁ Robust I/O

✁ File sharing

CS 105
“Tour of the Black Holes of Computing”

– 2 – CS 105

I/O: A Typical Hardware SystemI/O: A Typical Hardware System

main
memory

I/O
bridge

bus interface

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus Expansion slots for
other devices such
as network adapters.

– 3 – CS 105

Abstracting I/OAbstracting I/O

Low level requires complex device commands

✁ Vary from device to device

✁ Device models can be very different
� Tape: read or write sequentially, or rewind

� Disk: “random” access at block level

� Terminal: sequential, no rewind, must echo and allow editing

� Video: write-only, with 2-dimensional structure

Operating system should hide these differences

✁ “Read” and “write” should work regardless of device

✁ Sometimes impossible to generalize (e.g., video)

✁ Still need access to full power of hardware

– 4 – CS 105

Unix FilesUnix Files

A Unix file is a sequence of m bytes:

✁ B0, B1, , Bk , , Bm-1

Cool fact: All I/O devices are represented as files:

✁ /dev/sda1 (/boot disk partition)

✁ /dev/tty2 (terminal)

Even the kernel is represented as files:

✁ /dev/kmem (access to kernel memory)

✁ /proc (kernel data structures)

✁ /sys (device discovery and control)

– 5 – CS 105

Unix I/O OverviewUnix I/O Overview

Elegant mapping of files to devices allows kernel to export a simple
interface called Unix I/O

Key Unix idea: All input and output is handled in a consistent and uniform
way

Basic Unix I/O operations (system calls):

✁ Opening and closing files: open()and close()

✁ Reading and writing a file: read() and write()

✁ Changing the current file position (seek): lseek (not discussed)

�

✁

�

✂

����� �

✄ ☎ ✂

�

✄

�

✄ ✆ ✂

�����

���������	
����
	�	������

– 7 – CS 105

Regular FilesRegular Files

A regular file contains arbitrary data

Applications often distinguish between text files and binary files

✁ Text files are regular files with only ASCII or Unicode characters

✁ Binary files are everything else

� e.g., object files, JPEG images

✁ Kernel doesn’t know the difference!

Text file is sequence of text lines

✁ Text line is sequence of chars terminated by newline character (‘\n’)

� Newline is 0xa, same as ASCII line feed character (LF)

✁ Note that a proper text file always ends with a newline!

End of line (EOL) indicators in other systems

✁ Linux and Mac OS: '\n' (0xa)

� line feed (LF)

✁ Windows and Internet protocols: '\r' '\n' (0xd 0xa)

� Carriage return (CR) followed by line feed (LF)

– 8 – CS 105

DirectoriesDirectories

Directory consists of a dictionary of links

✁ Each link maps a filename to a file

Each directory contains at least two entries

✁ . (dot) is a link to itself

✁ .. (dot dot) is a link to the parent directory in the directory hierarchy (next slide)

Commands for manipulating directories

✁ mkdir: create empty directory

✁ ls: view directory contents

✁ rmdir: delete empty directory

– 9 – CS 105

Directory HierarchyDirectory Hierarchy

All files are organized as a hierarchy anchored by root directory named /
(slash)

Kernel maintains current working directory (cwd) for each process

✁ Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd geoff/ z/ include/ bin/

stdio.h emacssys/

unistd.h

foo.c

– 10 – CS 105

PathnamesPathnames

Locations of files in the hierarchy denoted by pathnames

✁ Absolute pathname starts with ‘/’ and denotes path from root
� /home/geoff/foo.c

✁ Relative pathname denotes path from current working directory
� ../geoff/foo.c

cwd: /home/z
/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd geoff/ z/ include/ bin/

stdio.h emacssys/

unistd.h

foo.c

– 11 – CS 105

Opening FilesOpening Files

Opening a file tells kernel you are getting ready to access it

Returns small identifying integer file descriptor

✁ fd == -1 indicates that an error occurred; errno has reason

✁ strerror converts to English (Note: use strerror_r for thread safety)

Each process created by a Unix shell begins life with three open files (normally connected
to terminal):

� 0: standard input

� 1: standard output

� 2: standard error

#include <errno.h>
...

int fd; /* file descriptor */

fd = open("/etc/hosts", O_RDONLY);
if (fd == -1) {

fprintf(stderr, "Couldn’t open /etc/hosts: %s", strerror(errno));
exit(1);

– 12 – CS 105

Redirecting FilesRedirecting Files

One of the most powerful ideas in Unix

You can easily redirect stdin/stdout/stderr

✁ ./echoclient < /etc/passwd redirects input

✁ grep knuth /etc/hosts > ~/knuthip redirects output

✁ ls –Rl /proc 2> /dev/null redirects error

You can even hook programs together (“piping”):

� find / -name core | wc -l

� find / -name core –print0 | xargs -0 rm –f

You’re not true Unix expert until you’re good with pipes

� Two-command pipes: advanced learner

� Three commands: excellent competence

� Six or more: scary ninja

� cat foo | bar is always incorrect (and sign of ignorance)

✁ Use bar < foo instead

✁ Don’t let stackoverflow fool you!

– 13 – CS 105

Closing FilesClosing Files

Closing a file tells kernel that you’re finished with it

Closing an already closed file is recipe for disaster in threaded programs
(more on this later)

Some error reports are delayed until close!

Moral: Always check return codes, even for seemingly benign functions
such as close()

perror is simplified strerror/fprintf; see man page

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) == -1) {
perror("close");
exit(1);

}

– 14 – CS 105

Reading FilesReading Files

Reading a file copies bytes from current file position into memory, then updates file
position

You must provide the memory (buffer)

Returns number of bytes read from file fd into buf

✁ nbytes == -1 indicates error occurred

✁ nbytes == 0 indicates end of file (EOF)

✁ Short counts (nbytes < sizeof buf) are possible and are not errors!

char buf[4096];
int fd; /* file descriptor */
unsigned int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 4096 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof buf)) == -1) {

perror("read");
exit(1);

}

– 15 – CS 105

Writing FilesWriting Files

Writing a file copies bytes from memory to current file position, then updates current file
position

Returns number of bytes written from buf to file fd

✁ nbytes == -1 indicates that an error occurred

✁ nbytes == 0 will never happen

✁ As with reads, short counts are possible and are not errors!

This example transfers up to 4096 bytes from address buf to file fd

char buf[4096];
int fd; /* file descriptor */
unsigned int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 4096 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof buf) == -1) {

perror("write");
exit(1);

}

– 16 – CS 105

Simple Unix I/O ExampleSimple Unix I/O Example

(Inefficiently) copies standard input to standard output one byte at a time
(basically, this is cat)

Note the use of error-handling wrappers for read and write (Appendix B in
text)

#include "csapp.h"

int main(void)
{

char c;

while(Read(STDIN_FILENO, &c, 1) > 0)
Write(STDOUT_FILENO, &c, 1);

exit(0);
}

– 17 – CS 105

Dealing with Short CountsDealing with Short Counts

Short counts can occur in these situations:

✁ Encountering (end-of-file) EOF on reads

✁ Reading text lines from a terminal

✁ Reading and writing network sockets or Unix pipes

Short counts never occur in these situations:

✁ Reading from disk files, except for EOF

✁ Writing to disk files

How should you deal with short counts in your code?

✁ Use the RIO (Robust I/O) package from your textbook’s csapp.c file (Appendix B)
� (But note that it handles EOF wrong on terminal)

✁ Use C stdio or C++ streams (also sometimes blows EOF!)

✁ Write your code very, very carefully

✁ Ignore the problem and accept that your code is fragile

– 18 – CS 105

“Foolproof” I/O“Foolproof” I/O

Low-level I/O is difficult because of short counts and other possible errors

Textbook provides RIO package, a (fairly) good example of how to
encapsulate low-level I/O

RIO is set of wrappers that provide efficient and robust I/O in applications
(e.g., network programs) that are subject to short counts.

Download from csapp.cs.cmu.edu/public/ics2/code/src/csapp.c
csapp.cs.cmu.edu/public/ics2/code/include/csapp.h

– 21 – CS 105

Unbuffered I/OUnbuffered I/O

RIO provides buffered and unbuffered routines

Unbuffered:

✁ Especially useful for transferring data on network sockets

✁ Same interface as Unix read and write

✁ rio_readn returns short count only if it encounters EOF

� Usually incorrect if reading from terminal

✁ rio_writen never returns a short count

✁ Calls to rio_readn and rio_writen can be interleaved arbitrarily on the same

descriptor

✁ Small unbuffered I/Os are horribly inefficient

– 22 – CS 105

Buffered I/O: MotivationBuffered I/O: Motivation

Applications often read/write one character at a time

✁ getc, putc, ungetc

✁ gets, fgets
� Read line of text one character at a time, stopping at newline

Implementing that as Unix I/O calls is expensive

✁ read and write require Unix kernel calls

� > 10,000 clock cycles per character

Solution: Buffered read

✁ Use Unix read to grab block of bytes

✁ User input functions take one byte at a time from buffer
� Automatically refill buffer when empty

�������������	����������

– 23 – CS 105

Buffered InputBuffered Input

Buffered:

✁ Efficiently read text lines and binary data from file partially cached in an internal
memory buffer

✁ rio_readlineb reads text line of up to maxlen bytes from file fd and stores it in
usrbuf. Especially useful for reading lines from network sockets

✁ rio_readnb reads up to n bytes from file fd

✁ Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily on same

descriptor
� Warning: Don’t intermix calls to rio_readn with calls to *b versions

– 24 – CS 105

������

Buffered I/O: ImplementationBuffered I/O: Implementation

For reading from file

File has associated buffer to hold bytes that have been read from file but
not yet read by user code

Layered on Unix file:

�������	����������

rio_buf
rio_bufptr

rio_cnt

�������������	�����
�	��	
����� ������

���������	
����
	�	��

�������������	��

– 25 – CS 105

Buffered I/O: DeclarationBuffered I/O: Declaration

All information contained in struct

typedef struct {
int rio_fd; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

�������������	����������

rio_buf
rio_bufptr

rio_cnt

– 26 – CS 105

Buffered RIO ExampleBuffered RIO Example

Copying the lines of a text file from standard input to standard output

#include "csapp.h"

int main(int argc, char **argv)
{

int n;
rio_t rio;
char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);
while(1) {

n = Rio_readlineb(&rio, buf, sizeof buf);
if (n == 0)

break;
Rio_writen(STDOUT_FILENO, buf, n);

}
exit(0);

}

– 29 – CS 105

How the Unix Kernel Represents Open FilesHow the Unix Kernel Represents Open Files

Two descriptors referencing two distinct open files

Descriptor 1 (stdout) points to terminal, and descriptor 4 points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

– 30 – CS 105

File SharingFile Sharing

Two distinct descriptors sharing the same disk file through two distinct open file table
entries

✁ E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos

refcnt=1

...

File pos

refcnt=1

...

File access

...

File size

File type

File A

File B

– 31 – CS 105

How Processes Share Files: forkHow Processes Share Files: fork

A child process inherits its parent’s open files

✁ Note: situation unchanged by exec functions (use fcntl to change)

Before fork call:

✁ ✂ ✄

✁ ✂ ☎

✁ ✂ ✆

✁ ✂ ✝

✁ ✂ ✞

�����	
�����
���

������
����
���
�������

�
����	����
����

���
�������
���
���������

��������
���

���
�������
���
���������

�	
����

refcnt=1

�
�
�

�	
����

refcnt=1

�
�
�

stderr
stdout
stdin �	
������

�
�
�

�	
��
	��

�	
������

�	
������

�
�
�

�	
��
	��

�	
������

�	
���������	��
�

�	
������	
��

– 32 – CS 105

How Processes Share Files: forkHow Processes Share Files: fork

A child process inherits its parent’s open files

After fork call:

✂ Child’s table same as parent’s; add +1 to each refcnt

✁ ✂ ✄

✁ ✂ ☎

✁ ✂ ✆

✁ ✂ ✝

✁ ✂ ✞

�����	
�����
���

������
����
���
�������

�
����	����
����

���
�������
���
���������

��������
���

���
�������
���
���������

�	
����

refcnt=2

�
�
�

�	
����

refcnt=2

�
�
�

�	
������

�
�
�

�	
��
	��

�	
������

�	
������

�
�
�

�	
��
	��

�	
������

�	
���������	��
�

�	
������	
��

✁ ✂ ✄

✁ ✂ ☎

✁ ✂ ✆

✁ ✂ ✝

✁ ✂ ✞

������

��	
�

– 36 – CS 105

File MetadataFile Metadata

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the stat and fstat
functions.

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection and file type */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

};

– 37 – CS 105

Standard I/O FunctionsStandard I/O Functions

The C standard library (libc.so) contains a collection of higher-level
standard I/O functions

✁ Documented in Appendix B of K&R

Examples of standard I/O functions:

✁ Opening and closing files (fopen and fclose)

✁ Reading and writing bytes (fread and fwrite)

✁ Reading and writing text lines (fgets and fputs)

✁ Formatted reading and writing (fscanf and fprintf)

– 38 – CS 105

Standard I/O StreamsStandard I/O Streams

Standard I/O models open files as streams

✁ Abstraction for a file descriptor and a buffer in memory

C programs begin life with three open streams
(defined in stdio.h)

✁ stdin (standard input)

✁ stdout (standard output)

✁ stderr (standard error)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}

– 39 – CS 105

Buffering in Standard I/OBuffering in Standard I/O

Standard I/O functions use buffered I/O

Buffer flushed to output fd on '\n‘ (if terminal), call to fflush or exit, or
return from main.

printf("h");

� � � �
 �� � �

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

– 40 – CS 105

Standard I/O Buffering in ActionStandard I/O Buffering in Action

You can see this buffering in action for yourself, using the always
fascinating Linux strace program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6) = 6
...
exit_group(0) = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

– 41 – CS 105

Aside: Working with Binary FilesAside: Working with Binary Files

Functions you should never use on binary files

✁ Text-oriented I/O such as fgets, scanf, rio_readlineb
� Interpret EOL characters.

� Use functions like rio_readn or rio_readnb instead

✁ String functions
� strlen, strcpy, strcat

� Interprets byte value 0 (end of string) as special

