CS 105

I/0: A Typical Hardware System

HMC C§ I

. CPU chip
“Tour of the Black Holes of Computing” A
register file
) ALU
InPUt and OUtpUt system bus memory bus
ir | :
o KO K,
Topics
= /O hardware < L:l L:l l:: >
= Unix file abstraction /0 bus Expansion slots for
= Robust I/0 other devices such
. . usB graphics disk as network adapters.
= File sharing | controller ’ d ‘ controller
mousekeyboard monitor
_o- Cs 105
HAC Csyy HNC (5
. 3 . . >
Abstracting 1/0 {12y Unix Files {12y
O O
Low level requires complex device commands A Unix file is a sequence of m bytes:
= Vary from device to device m By, By, ..., By y e, By
= Device models can be very different
© Tape: read or write sequentially, or rewind Cool fact: All I/O devices are represented as files:
° Dlsk:- random ac.cess at bl?ck level - ® /dev/sdal (/boot disk partition)
e Terminal: sequential, no rewind, must echo and allow editing R
e Video: write-only, with 2-dimensional structure = /dev/tty2 (terminal)
Operating system should hide these differences . .
= “Read” and “write” should work regardless of device Even the kernel is represented as files:
= Sometimes impossible to generalize (e.g., video) ® /dev/kmem (access to kernel memory)
= Still need access to full power of hardware = /proc (kernel data structures)
m /sys (device discovery and control)
-3- Cs 105 —4-

Cs 105

{HMC CS: I

Unix I/0 Overview ; O ;

Elegant mapping of files to devices allows kernel to export a simple
interface called Unix I/O

: All input and output is handled in a consistent and uniform
way
Basic Unix I/O operations (system calls):
= Opening and closing files: open () and close ()
m Reading and writing a file: read () and write ()
m Changing the current file position (seek): 1seek (not discussed)

[efe] =er [ofe

o] ot

Current file position = k

Cs 105

{HMC_ CS: I

Regular Files B3

A regular file contains arbitrary data

Applications often distinguish between text files and binary files
= Text files are regular files with only ASCII or Unicode characters
m Binary files are everything else
® e.g., object files, JPEG images
m Kernel doesn’t know the difference!
Text file is sequence of text lines
= Text line is sequence of chars terminated by newline character (‘\n’)
e Newline is 0xa, same as ASCII line feed character (LF)
= Note that a proper text file always ends with a newline!
End of line (EOL) indicators in other systems
m Linux and Mac OS: '\n' (0xa)
@ line feed (LF)
» Windows and Internet protocols: '\r' '\n' (0xd Oxa)
® Carriage return (CR) followed by line feed (LF)

Cs 105

{HMC CS: I

Directories e

Directory consists of a dictionary of links

m Each link maps a filename to a file
Each directory contains at least two entries

m . (dot) is alink to itself

m .. (dot dot) is a link to the parent directory in the directory hierarchy (next slide)
Commands for manipulating directories

m mkdir: create empty directory

= 1s: view directory contents

= rmdir: delete empty directory

Cs 105

{HMC_ CS: I

Directory Hierarchy : O :

All files are organized as a hierarchy anchored by root directory named /
(slash)

/

T

bin/ dev/ ete/ home/

usr/
bash ttyl group passwd geoff/ z/ include/ bin/
foo.c stdio.h sys/ emacs

unistd.h

Kernel maintains current working directory (cwd) for each process
m Modified using the cd command

Cs 105

Pathnames

Locations of files in the hierarchy denoted by pathnames
m Absolute pathname starts with ‘/’ and denotes path from root

® /home/geoff/foo.c

m Relative pathname denotes path from current working directory

® ../geoff/foo.c

/

cwd:

T

bin/ dev/ ete/ home/

usr/

| | N N TN

{HMC CS: I

Opening Files [y

#include <errno.h> O

int £d; /* file descriptor */

£d = open("/etc/hosts", O_RDONLY);

if (fd == -1) {
fprintf (stderr, "Couldn’t open /etc/hosts: $%s", strerror(errno));
exit (1);

Opening a file tells kernel you are getting ready to access it

Returns small identifying integer file descriptor
m £fd == -1 indicates that an error occurred; errno has reason
m strerror converts to English (Note: use strerror_r for thread safety)

bash ttyl group passwd geoff/ include/ bin/
Each process created by a Unix shell begins life with three open files (normally connected
to terminal):
foo.c stdio.h sys/ emacs = 0: standard input
= 1: standard output
unistd.h = 2: standard error
—10- : cs 105 11— €S 105
IHMC €8y IHMC €8y
Redirecting Files {12y Closing Files ALy
A A 5 int f£d; /* file descriptor */

One of the most powerful ideas in Unix (oD sl e il o
You can easily redirect stdin/stdout/stderr)

m ./echoclient < /etc/passwd redirects input 4 (st = dieoE) == =) (¢

. perror ("close");

m grep knuth /etc/hosts > ~/knuthip redirects output exit (1);

m 1s -R1 /proc 2> /dev/null redirects error }
You can even hook programs together (“piping”):) . , .. o

® find / -name core | we -1 Closing a file tells kernel that you’re finished with it

m find / -name core -print0 args -0 rm -f - - - f - -

i} . B) | o Closing an already closed file is recipe for disaster in threaded programs
You’re not true Unix expert until you’re good with pipes f
) (more on this later)

= Two-command pipes: advanced learner

u Three ds: petence Some error reports are delayed until close!

= Six or more: scary ninja

" cat foo | bar is alwaysincorrect (and sign of ignorance) Moral: Always check return codes, even for seemingly benign functions

ar < foo
® Don’t let stackoverflow fool you! such as close ()
perror is simplified strerror/fprintf; see man page

—12- Cs 105 -13- Cs 105

{HMC CS: I

Reading Files {2}

char buf[4096];
int £d; /* file descriptor */
unsigned int nbytes; /* number of bytes read */
/* Open file fd ... */
/* Then read up to 4096 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof buf)) == -1) {
perror ("read") ;
exit(1);
}

Reading a file copies bytes from current file position into memory, then updates file
position

You must provide the memory (buffer)
Returns number of bytes read from file £d into buf
m nbytes == -1 indicates error occurred
m nbytes == 0 indicates end of file (EOF)
m Short counts (nbytes < sizeof buf) are possible and are not errors!
—14- €S 105

IHMC €8y
Writing Files o
char buf[4096];

int f£d; /* file descriptor */
unsigned int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 4096 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof buf) == -1) {
perror ("write");
exit (1);

}

Writing a file copies bytes from memory to current file position, then updates current file

position
Returns number of bytes written from buf to file £d
= nbytes == -1 indicates that an error occurred
m nbytes == 0 will never happen

m As with reads, short counts are possible and are not errors!
This example transfers up to 4096 bytes from address buf to file £d
15— CS 105

{HMC CS: I

Simple Unix I/O Example 153

#include "csapp.h"

int main(void)
{

char c;

while (Read (STDIN_FILENO, &c, 1) > 0)
Write (STDOUT_FILENO, &c, 1);
exit (0);

}

(Inefficiently) copies standard input to standard output one byte at a time
(basically, this is cat)

Note the use of error-handling wrappers for read and write (Appendix B in
text)

16 cs 105

{HMC_ CS: I

Dealing with Short Counts %}

Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
= Reading text lines from a terminal
= Reading and writing network sockets or Unix pipes

Short counts never occur in these situations:
= Reading from disk files, except for EOF
m Writing to disk files

How should you deal with short counts in your code?

m Use the RIO (Robust I/0) package from your textbook’s csapp . c file (Appendix B)
® (But note that it handles EOF wrong on terminal)

m Use C stdio or C++ streams (also sometimes blows EOF!)
= Write your code very, very carefully
= Ignore the problem and accept that your code is fragile

—17— Cs 105

“Foolproof” 110 ey
o

Low-level I/O is difficult because of short counts and other possible errors

Textbook provides RIO package, a (fairly) good example of how to
encapsulate low-level 1/0

RIO is set of wrappers that provide efficient and robust I/O in applications
(e.g., network programs) that are subject to short counts.

Download from csapp.cs.cmu.edu/public/ics2/code/src/csapp.c
csapp.cs.cmu.edu/public/ics2/code/include/csapp.h

18- cs 105

{HMC_ CS: I

Unbuffered 1/0 ey

RIO provides buffered and unbuffered routines

Unbuffered:
m Especially useful for transferring data on network sockets
= Same interface as Unix read and write

m rio_readn returns short count only if it encounters EOF
e Usually incorrect if reading from terminal

® rio_writen never returns a short count

m Calls to rio_readn and rio_writen can be interleaved arbitrarily on the same
descriptor

= Small unbuffered I/Os are horribly inefficient

-21- Cs 105

{HMC CS: I

Buffered I/0: Motivation)

Applications often read/write one character at a time
m getc, putc, ungetc
m gets, fgets
o Read line of text one character at a time, stopping at newline
Implementing that as Unix I/O calls is expensive
m read and write require Unix kernel calls
® > 10,000 clock cycles per character
Solution: Buffered read
m Use Unix read to grab block of bytes

m User input functions take one byte at a time from buffer
e Automatically refill buffer when empty

Buffer already read unread

22— CS 105

Buffered Input ; O ;
Buffered:

m Efficiently read text lines and binary data from file partially cached in an internal
memory buffer

m rio_readlineb reads text line of up to maxlen bytes from file £d and stores it in
usrbuf. Especially useful for reading lines from network sockets
m rio_readnb reads up to n bytes from file £d

m Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily on same
descriptor
o Warning: Don’t intermix calls to rio_readn with calls to *b versions

—23— Cs 105

(HMC. CS,!
Buffered I/0: Implementation : O :
For reading from file

File has associated buffer to hold bytes that have been read from file but
not yet read by user code

|<— rio_cnt —»|

Buffer | already read | unread |

rio_buf /‘ /
rio_bufptr

Layered on Unix file:

I-— Buffered Portion —-l

not in buffer | already read | unread | unseen

Current File Position
—24-— Cs 105

(HMC. CS,!

Buffered I/0: Declaration)

All information contained in struct

|¢— rio_ecnt —-I

Buffer | already read | unread |

rio_buf —/ j
rio_bufptr

typedef struct {
int rio_f£d; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio_buf[RIO_BUFSIZE]; /* internal buffer */
} rio_t;
— 25— CS 105

(HMC. CS,!

Buffered RIO Example : o :

Copying the lines of a text file from standard input to standard output

#include "csapp.h"

int main(int arge, char **argv)
{

int n;

rio_t rio;

char buf [MAXLINE];

Rio_readinitb (&rio, STDIN_FILENO);

while (1) {
n = Rio_readlineb (&rio, buf, sizeof buf);
if (n == 0)
break;
Rio_writen (STDOUT_FILENO, buf, n);
}
exit (0);
}
-26- CS 105

(HMC. CS,!

How the Unix Kernel Represents Open Files -

Two descriptors referencing two distinct open files
Descriptor 1 (stdout) points to terminal, and descriptor 4 points to open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A (terminal)
stdin fd 0 = File access
stdout fd1 - ile si Info in
stderr fd2 File pos F.lle size e
fd3 refent=1 File type struct
fd4 : H
File B (disk
File access
File pos File size
refent=1

File type

—29— Cs 105

(HMC. CS,!

File Sharing A1
)
Two distinct descriptors sharing the same disk file through two distinct open file table
entries

m E.g., Calling open twice with the same £ilename argument

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all pr) all pr
File A

tdo — File access
:: ; File pos File size
id3 refent=1 File type
fda E

File pos

refent=1

-80- i CS 105

(HMC. CS,!
How Processes Share Files: fork A%
@
A child process inherits its parent’s open files
= Note: situation unchanged by exec functions (use fcnt1 to change)
Before fork call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fd0 = File access
stdout fd1 o
i File size
stderr fd2 Eilepos
fd3 refent=1 File type
fda H i
File B (disk)
1 File access
File pos File size
refent=1 Elleitype
31— : cs 105

(HMC. CS,!

How Processes Share Files: fork Y

A child process inherits its parent’s open files
After fork call:
= Child’s table same as parent’s; add +1 to each refcnt

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

Parent File A (terminal)
fdo — File access
z ; File pos File size
fd3 refent=2 File type
fda ; b

Child File B (disk)

1 File access
fdo e
fd1 File pos File size
: : refcnt=2 Elleliype
32— fda €S 105

(HMC. CS,!
. 2
File Metadata {2}
@
Metadata is data about data, in this case file data.
Maintained by kernel, accessed by users with the stat and £stat
functions.

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* device */
ino_t st_ino; /* inode *
Imode_t st_mode; /* protection and file type */ l
nlink_t st_nlink; /* number of hard links */
B_id._t st_uid; /* user ID of owner */ |
id t st_gid; /* group ID of owner */
o 5 YR

A i *
off_t st_size; /* total size, in bytes */

unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */ |
time_t st_ctime; /* time of last change */

—36— Cs 105

{HMC CS: I

{HMC_ CS: I

= . .
Standard I/0 Functions {2y Standard I/0 Streams {2y
) O
The C standard library (1ibc. so) contains a collection of higher-level Standard 1/0 models open files as streams
standard I/0 functions = Abstraction for a file descriptor and a buffer in memory
= Documented in Appendix B of K&R C programs begin life with three open streams
(defined in stdio.h)
Examples of standard /O functions: = stdin (standard input)
= Opening and closing files (fopen and fclose) ® stdout (standard output)
= Reading and writing bytes (£read and fwrite) ® stderr (standard error)
= Reading and writing text lines (£gets and fputs) #include <stdio.h> . .
extern FILE *stdin; /* standard input (descriptor 0) */
= Formatted reading and writing (£scanf and fprintf£) extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */
int main() {
fprintf (stdout, "Hello, world\n");
}
-37- CS 105 -38- CS 105
IHMC €8y IHMC €8y
. .) . . . >
Buffering in Standard 1/0 {12y Standard I/0 Buffering in Action ALy
) O

Standard I/0 functions use buffered 1/0

print£("h");
printf("e");
printf("1");
print£("1");
printf("o");
buf printf("\n");

[hTelTTTTol\nl . T.1

\ fflush (stdout);

write(l, buf, 6);

Buffer flushed to output fd on "\n‘ (if terminal), call to ££1ush or exit, or
return from main.

—39- Cs 105

You can see this buffering in action for yourself, using the always

fascinating Linux strace program:

#include <stdio.h> linux> strace ./hello

int main() e

{ write(1l, "hello\n", 6)
printf("h"); e
printf("e"); exit_group (0)
printf("1");
print£("1");
printf("o");
printf("\n");
£flush (stdout) ;
exit (0);

— 40—

execve ("./hello", ["hello"]l, [/* ...

Cs 105

HMC CS[

Aside: Working with Binary Files {2

Functions you should never use on binary files
m Text-oriented I/0O such as fgets, scanf, rio_readlineb
o Interpret EOL characters.
e Use functions like rio_readn or rio_readnb instead

m String functions
® strlen, strcpy, strcat
o Interprets byte value 0 (end of string) as special

— 41— Cs 105

