
CS 105
I/O Lab

1 About Hints
There is a large “Hints” section (Section 7) at the end of this handout. Be sure to read the entire
handout and the hints before starting work, and refer back to the hints frequently while you are
writing and debugging your program.

2 Introduction
One of the most important approaches to fighting a pandemic is contact tracing: locating infected
people and tracking down everyone whom they might have passed the disease to. Thus, it is
helpful to have a database that keeps a record of everyone who has recently been near an infected
person. And since we don’t know a priori who will become infected, one approach that has been
suggested is to use a smartphone application to record those close contacts, and then look them up
in a database when an infection is discovered.

In this lab you will build a contact-tracing database and then run simulations to see how well
contact tracing works.

2.1 Important Notes: Lab vs. Reality
Before we begin, we want to highlight some important differences between what we are doing in
this lab and what goes on in the real world:

Privacy. A database that records interactions between people has enormous negative implications
for civil liberties. It can reveal all sorts of private information, including medical issues
(i.e., did someone visit a cardiologist?), planned job changes, political associations, mari-
tal infidelity, and much more. For that reason, automated contact tracing is controversial,
and a good contact-tracing application tries to reduce the risk by anonymizing its database.
Nevertheless, a database that allows government authorities to discover who visited whom
is inherently problematic. For this lab, we are going to ignore those issues because we are
building an example application, but you should think carefully about the implications of
creating such a tool in the real world.
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Simulation. This lab includes a simulation of the spread of an infection through a large population.
We want to emphasize that the epidemiological model used in this lab has almost zero
relationship to how diseases actually spread. You will find it amusing to play with the
various variables and see how they affect the results, but do not be misled into believing that
what you learn has any direct applicability to the real world. A realistic model is much more
complex and is far beyond the scope of this lab.

2.2 Logistics
As always, you must work with your partner. Handin will be electronic, using cs105submit.
(You can type “make submit” to submit this lab; you will be prompted for the assignment
number.)

3 Overview
The purpose of this lab is to allow you to become comfortable with the Unix I/O system, and in
particular to help you understand how a complex data structure can built on secondary storage (the
disk drive). You will implement a data structure called a B+ tree, which will be stored in a disk
file. The tree will serve as a database that holds information about the incidence of a disease in a
population; a contact-tracing application (that we provide) will use the database to simulate tracing
the spread of the disease.

4 B+ Trees
One of the coolest data structures in computer science is the B-tree and its variants, including the
B+ tree, the B* tree, and the Bε tree. You may have studied B-trees in your data structures course,
or you might have previously encountered 2,3,4-trees, which are somewhat related. We will be
building a very minor variation on a B+ tree. B+ trees are dictionaries designed to hold more data
than can comfortably fit in a typical computer’s memory.

In essence, a B+ tree is simply a balanced n-ary tree where n is very large. For example, if n is
256 (28), then a three-level tree can access 224 = 16M items (compare a balanced binary tree, where
16M items would require 24 levels). The large fanout and shallow depth are critically important
because, unlike most other data structures, a B+ tree is stored on disk rather than in memory.
Descending one level requires a disk I/O, which typically takes 5–10 ms. Thus, looking a single
item up in a 3-level B+ tree would take 15–30 ms,1 whereas a corresponding 24-level binary tree
would take 120–240 ms, or nearly a quarter of a second. That 8-to-1 advantage becomes critically
important in the face of multiple lookups.2

To ensure that a B+ tree is balanced, insertions and deletions happen only at the leaves of the
tree. If a leaf becomes full, it is split into two half-full leaves, and a pointer to the new node is

1In fact, the number is usually far less because the internal nodes can often be found in the operating system’s
buffer cache, so that no I/O is necessary to fetch them. Only the “leaf” node must be accessed, reducing the cost to
just 5–10 ms.

2Real B+ trees usually have even greater fanouts: 1K, 16K, or larger.
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inserted into the node immediately above. If that node becomes full, it too is split, and so on up to
the root. Finally, if the root is filled, it is split in half and a new root is created just above it. It is
only in that case that the tree depth increases.

4.1 Our B+ Trees vs. Real Ones
Note: You can safely skip this section when you are getting started on the lab and read it later
instead.

There are a few minor differences between our B+ Trees and a robust production implementa-
tion. All of the differences are designed to simplify the code:

• We don’t support deletion; deletion is a must in the real world.

• Our aggressive approach to splitting can be a bit wasteful of both space and time.

• Since the keys in an internal node represent the “boundaries” between the block pointers, the
required number of keys is one less than the number of pointers. Dropping one key would
allow one more pointer, giving a slightly larger fanout and thus a (possibly) shallower tree.

• “Range” queries that ask for a range of keys are a common operation. To support range
queries, the leaf nodes should be managed as a singly linked list with pointers to siblings.

• It’s unrealistic to require fixed-sized keys and values. A flexible B+ tree will allow com-
pletely variable sizes for both (at the cost of some extra overhead and lower fanout, since
some space then needs to be used to keep track of the sizes of things).

4.2 Handout
The handout is distributed in a tar file named iolab-handout.tar, which you will find
linked from the lab Web page. Start by copying iolab-handout.tar to a (protected) directory
in which you plan to do your work. Then give the following command:

tar xvf iolab-handout.tar

This will cause a number of files to be unpacked in the directory:

Makefile A Makefile that will build the contact-tracing application, including your B+ Tree im-
plementation. You should always compile using make so that you compile with the correct
options.

contact trace.c The contact-tracing application itself. You should not modify this file.

btree.h A header file that contains the API declarations for the B+ tree implementation. You
should not modify this file.

btree.c A skeleton for your B+ tree implementation. This is the file you will modify, and is the
only file you will hand in.

sample solution A runnable sample solution to the lab.

iolab.pdf A copy of this writeup.
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5 The Contact-Tracing Application
The B+ tree will serve as the database for a simple epidemiological contact-tracing program. The
program operates in 5 phases:

1. Create N people (default 4000), each with a unique (random) 32-bit identifier, and insert
them into the database.

2. Mark a single person as known to be infected with a disease.

3. Simulate C contacts (default 40000) among people as follows:

(a) Select two people at random. (See below for a discussion of semi-isolation groups.)

(b) Update each person’s “who has been near me” table with the identity of the other per-
son. If the table is full, discard the oldest entry in the table.

(c) If one person is healthy and the other is infected (whether known or unknown to the
epidemiologists) possibly mark the healthy person as infected but unknown.

4. Repeatedly trace contacts until the table stops changing:

(a) For each person in the table who is known to be infected, look up their contacts in the
database.

(b) For each of those contacts “test” them for the disease: if they are infected but unknown,
mark them as known.

5. Finally, print a single character for each person: “.” if they are healthy, “?” if they are
infected but not known, and “X” if they are infected and known. Doing so will produce a
nice graphic in your terminal.

The results of the program are left in a file named people.btree. If you wish, you can
experiment further by specifying the “-r” switch (see below).

5.1 Options
The contact-tracing program accepts the following switches (plus a few others):

-c n Keep track of only the n most recent contacts (default 5, maximum 13).

-g n Divide the population into groups of size n; all group members can interact with each other
but only one group member (the “leader”) is allowed to interact with anyone outside the
group, and then only with other “leaders.”

-N n Simulate n interactions between people. Note that this parameter is population-wide; if you
specify -N 10 in a population of 4000, ten randomly chosen people will interact once each
with a single other person—which probably means the disease won’t spread at all. The
default is 10 interactions per person, i.e., 40,000 interactions for a population of 4,000.
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-n n Simulate a population of n people. Obviously, larger values of n will take longer and will
fill up your screen with more data. The program will start to misbehave if n is more than
about 100,000,000 (but it will also become excruciatingly slow—and will fill up your disk
quota—before then). The default is 4,000, which will look nice on your screen.

-p After the population is created, print a representation of the tree to standard output. This
output shows the nesting of the tree and the keys in each entry, but not the values. You may
find it useful for debugging your code.

-r Restart the simulation from the state saved in the B+ tree. In this case the number of people is
taken from the database, but new interactions are generated and you can change the number
of tracked contacts. You will normally want to specify a different value for the “-s” switch
if you use “-r”.

-s n Set the seed of the random-number generator to n (default 0). We use a constant seed so that
the results of the simulation will be reproducible, but if you try different seeds you watch the
results vary from run to run.

-t x Set the probability of disease transmission upon each contact (0-1, default 0.15).

5.2 Running the Application
We have provided a sample solution to the problem (cleverly named “sample_solution”). At
any point, you can run it to see what the output should look like. Furthermore, the Python script
named “test_contact” will compare the output of your program with the sample solution (see
Section 5.2.2).

5.2.1 Trial Runs

We suggest that you begin by running the sample solution in several ways:

./sample solution The default parameters infect a quite a few people—but they don’t iden-
tify very many of the infections.

./sample solution -c 13 Tracking more contacts helps a lot—the question marks have
almost all turned into X’s.

./sample solution -t 0.45 Unsurprisingly, increasing the transmission probability in-
creases the number of infections. Less obviously, it also makes tracing work better (why?).

./sample solution -N 800000 Increasing the number of interpersonal interactions also
infects more people—in fact, doubling the interactions gives more infections (3619) than
tripling the transmission probability does (3449).

./sample solution -t 0.45 -g 5 Limiting most interactions to small groups reduces
the spread!

./sample solution -n 30 -p Will show you a very small B+ tree.

Feel free to play around more—but always remember that this is an inaccurate simulation.
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5.2.2 Testing Your Version

At first, you should run the application with a VERY small number of people. We recommend that
you start with three, because three people will fit into a single leaf:

./contact_trace -n 3

After you get that working, try a few more people (still in the single digits) to test your leaf-
splitting. When you get over 29 people your code will have to split the root node, and at 301 it’ll
split internal nodes (after which point things should start to become pretty robust).

When you are pretty sure you have a correct answer, you can use the “test_contact”
Python script to compare your output with the output of the sample solution. If there are any
differences between the two, they will be highlighted in blue. You can choose different highlight
colors with the -h switch, and you can give other contact-tracing switches as long as -h is given
first. For example:

./test_contact -h white -n 3000

will run with 3000 people and highlight differences in white. Try different highlight colors—
including the color of your background—to see which is best. (You can look at the Python code to
see the available choices.)

6 Detailed Instructions
Your job is to implement a B+ tree. We have provided a handout that contains several files; you
will modify only one file, btree.c.

6.1 Implementing the B+ Tree
At the top of btree.c, just after the #include statements, is a data structure where you must
put your names and CS logins. Do that now, before you forget! Be sure to maintain the format of
information in the data structure (including the NULL at the end); our grading software expects
that format.

6.2 B+ Tree Structure
Because disk I/O is so expensive, a B+ tree is carefully laid out to play well with the disk. In
particular, each node of the tree is the same size, and that size is deliberately chosen to be the same
size as a disk block so that it can be efficiently read from or written to the disk drive.3

Our B+ tree is a dictionary, also known as a key-value store. The key is an 8-byte integer (a C
unsigned long), defined as type b_key in the provided btree.h header file. The value is
an arbitrary byte array of up to 56 bytes, defined as type b_value in the header. (The provided
contact-tracing application uses that space to store a struct human.)

3For this lab, that’s a slight lie. The lab can be built with different node sizes, and we will start with a size smaller
than a block because doing so will help you debug your code.
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The B+ tree makes a distinction between internal and leaf nodes. An internal node does not
contain data; it only has keys (type b_key) and the offsets of other nodes (type b_offset). A
leaf node contains pairs of keys and values. In the header file, both types of nodes are encompassed
in a b_block, which is the size of a (simulated) disk block. You can choose that size when you
compile your program.

6.2.1 Internal Nodes

The exact layout of an internal node is as follows:

typedef struct {
b_key key; // First key in block
b_offset offset; // Offset of block in b_tree file

}
b_kp_pair;

typedef struct {
b_type type; // Must be B_INTERNAL
b_count count; // Number of key/offset pairs in this node
b_kp_pair pairs[B_KP_PAIRS_PER_BLOCK];

}
b_internal;

where B_KP_PAIRS_PER_BLOCK is calculated so that a b_nodewill just fit inside a disk block.
The type field identifies the block as being an internal node (compare leaf nodes, below).

Each entry in pairs, say pairs[i], describes a subtree rooted at pairs[i].offset.
That subtree contains all keys that are greater than or equal to pairs[i].key and less than
pairs[i+1].key. (The last entry in pairs describes all keys greater than its key.)

For example, consider a node that covers keys from 1000–1999 and has three leaf nodes below
it. The first leaf (A) contains keys in the range 1000–1199, the second (B) covers 1200–1699, and
the third (C) is for 1700–1999. (For simplicity, we refer to the leaves by labels rather than their
true disk addresses.)

Field Value
type B_INTERNAL
count 3
pairs[0] 1000 / A
pairs[1] 1200 / B
pairs[2] 1700 / C

When we are looking up a key k in a node, we want to find the largest value of i such that
pairs[i].key is less than or equal to k.4 So if k = 1234, we will locate pairs[1] and then
follow its block pointer to search block B for the key.

A minor note: you may be wondering what we should do if k is less than pairs[0].key.
The answer is that it’s an error: the root node starts with a key of 0, and any internal node should
only be reached if k is in its range (e.g., we should only look inside node B if 1200 ≤ k < 1700).

4A binary search is easy to write and is the most efficient approach.
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Although in this example we only have two levels, in general we can have many. An internal
node might cover a range of a million keys; each entry in the pairs array might then lead to a
child node that covers about 100,000 keys.

6.2.2 Leaf Nodes

A leaf node is different from an internal node, because there is no need for block pointers but
key/value pairs must be recorded:

typedef struct {
b_key key; // Key for looking up this value
b_value value; // Value associated with key

}
b_kv_pair;

typedef struct {
b_type type; // Must be B_LEAF
b_count count; // Number of key/value pairs in this node
b_kv_pair kv[B_KV_PAIRS_PER_BLOCK];

}
b_leaf;

where B_KV_PAIRS_PER_BLOCK is calculated so that a b_leafwill just fit inside a disk block.
The type field identifies the block as being a leaf node (compare internal nodes, above).

Leaf nodes are conceptually simpler than internal nodes; a key is either present or not, and can
quickly be found by a binary search.

6.2.3 Generic Nodes

When we read a block from the disk, we don’t know a priori whether it is an internal node or a
leaf node. Similarly, the code that writes data back should work regardless of which type of node
it is. Finally, it’s also critically important that the amount of data written is exactly the size of a
disk block; in the structures above that’s hard to guarantee.

For that reason, both kinds of nodes are encapsulated into a union:

typedef union {
b_internal internal; // Internal node with pointers
b_leaf leaf; // Leaf with data
char pad[B_BLOCK_SIZE];

}
b_block;

where B_BLOCK_SIZE is defined as the size of a disk block (256 by default; see Section 7 for
a bit more about that). The pad field ensures that the union is at least as big as the desired size;
the declarations of b_node and b_leaf are no larger than that size, so in the end a b_block is
precisely correct. Note that since there is a type field, we can check the type of any block without
knowing it beforehand. For example, if we have declared data as a b_block, we can write:
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if (data.internal.type == B_INTERNAL)
// Handle internal node

Accessing fields inside a block is a bit painful, since you would have to write things like
data.internal.count to learn the number of key/pointer pairs in an internal node. So there
are some #define declarations to simplify notation:

#define i_type internal.type
#define i_count internal.count
#define i_pairs internal.pairs
#define l_type leaf.type
#define l_count leaf.count
#define l_kv leaf.kv

That way, you can write just data.i_type to get an internal node’s type, data.i_count
to get its count field, and so forth.

6.2.4 Insertions

As mentioned above, if a node is full when inserting a key, we must split that node into two half-
full ones, perform the insertion, and then insert a pointer to the new node into the node above. It
turns out that it’s a bit simpler to be aggressive about node splitting: on the way down the tree, if
we might do an insertion we check the size of each node we encounter and, if it is full, proactively
split it. This approach sometimes splits nodes sooner than necessary (you should think about why)
but is easier to write.

6.3 Functions You Need to Write
The skeleton file provided in btree.c contains “NEEDSWORK” and “END NEEDSWORK”
comments to highlight things you need to look at. (A few of the NEEDSWORK comments are just
things you need to read, but most mark places where you will need to write new code.)

An important detail: the code we have provided won’t run as-is. In particular, it will crash if
you implement write_block but not search_internal.

Here are the specific things you need to do; we have listed them in the order you should attack
them rather than in the order they appear in the file:

write block Doing I/O to the B+ tree requires functions that will read and write blocks at
a given offset in the file. Your code won’t work until write_block works. We have
provided a full implementation of read_block for you, and you can study and use it as a
guide for writing write_block—but notice that latter is simpler than read_block.

find end Although you won’t need this function right away, it is also very simple to implement.
Read the manual page for lseek (“man 2 lseek”) and then write the code.

search internal This function is responsible for finding the proper child in an internal node;
it also calls split_internal and split_leaf when necessary. Write the search code
now, and note that you may have to make a small change later (see the comments).
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search leaf This function is responsible both for finding information in a leaf node, and for
inserting data into a leaf. You will need to add code to do searches and inserts. Once
you’ve done that, the test program should be able to run with up to 2 people (and you should
test it at this point to be sure it works). In addition, if you compile with the command
“make B BLOCK SIZE=4096 clean all”, the test program should work with up to
62 people—and you should test that as well.

split root We have provided a complete implementation of this function. However, you
should study it carefully before you attack the next two functions, because it will serve
as a useful guide.

split leaf This function is called when a leaf node (child_to_split) becomes full. It
must split the leaf into two nodes, and then update its parent by inserting a pointer to the new
“sibling” node. (The parent is guaranteed to have room for the new pointer—why?) You
can use split_root as a guide for writing your own code—note that split_leaf’s
requirements are a bit simpler than split_root’s. After you write split_leaf, re-
compile without changing B_BLOCK_SIZE and test with increasing numbers of people—5
at first, then more until your code works with 29 people.

split internal This is the last function you should write. Similar to split_leaf, this
function is called when an internal node (child_to_split) becomes full. It must split
the node into two nodes, and then update its parent by inserting a pointer to the new “sibling”
node. Start your testing by tracing contacts for 30 people and then try larger numbers. You’ll
probably find that once it works for around 100 people, it will work equally well for 4,000.

7 Hints
• Don’t try to write everything at once! Do things in the order given in Section 6.3 above, and

test with just two people as soon as you have written the search code in search_leaf.
Test again, with three people, after you’ve written the leaf insertion code. Continue to follow
the testing advice above as you write more functions.

• Use gdb! Debuggers are amazingly useful for dealing with complicated data structures. A
useful hint for this assignment is to print things in hexadecimal. For example, if “node”
points to a B+ tree node, try “p/x *node”. Even better, “p/x node.leaf” will show
just the leaf fields of a leaf node.

• In gdb, use step and next, not stepi and nexti. You really don’t want to debug at the
instruction level for this lab.

• You may find it helpful to display the encoded tree on your screen. But since it’s a binary
file, you can’t just bring it up in an editor or use “cat”. Instead, try this command:

od -t x4 -A x people.btree | less
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That will print the file in hexadecimal, which is useful when dealing with things like the
people IDs used by the contact-tracing application. If you’re not familiar with “less”, it’s a
program that presents things to you one screen at a time. Hit the space bar to see more, or
use the page up/down keys. Hit “q” when you’re done looking, or “?” for more help (for
example, you can do string searches, which can be very helpful in debugging). You should
spend a bit of time learning how to interpret the hex dump as B+ tree nodes.

• As mentioned above, you should start by testing with a VERY small tree (“-n 3”). That will
keep things from getting horribly complicated while you’re still figuring out your code.

• As distributed, the Makefile sets up your B+ tree code to use a very small block size of 256
bytes. This size was chosen so that you would only need to insert a few people before your
node-splitting code was invoked. Once you have your code working, you should test it with
a more reasonable block size. You can do that on the make line:

make B_BLOCK_SIZE=4096 clean all

Be sure to test with a large block size! During grading, we will test with larger blocks as
well with 256-byte ones. (Note that the larger the block size, the more people you’ll need to
ensure that the splitting code gets exercised.)

8 Output Format
All of the output for this lab is generated by the contact_trace program. There are two types
of output: the result of contact tracing, and the debugging output from the “-p” switch.

8.1 Contact Tracing Output
The application generates one character for each individual, in a single long line that should auto-
matically wrap on your terminal to form a 2-dimensional grid. There is a “.” for a healthy person,
an “X” for a person known to be infected, and a “?” for a person who is infected but has not been
identified by contact tracing. For example, if your screen is 10 characters wide it might look like
this:

X.......XX
..X..X.X.X
X.X.X...X.
XX..X....X
.X.XXXX.X.
.X...X..XX
XX..X....X
.X..X..X.X
..X...X..?
.X....XX.X

Note that the layout of the characters does NOT imply that the simulated people are physically
next to each other; it’s just to make it easy for humans to look at.
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8.2 Debugging Output
Here is a sample of the output from the “-p” switch for a small tree:

ROOT @0x0
+-LEAF 0x00000000 - 0x66334873 @0x100
| 0x327b23c6
| 0x643c9869
+-LEAF 0x66334873 - 0x6b8b4567 @0x300
| 0x66334873
+-LEAF 0x6b8b4567 - 0xffffffffffffffff @0x200
| 0x6b8b4567

The plusses, dashes, and vertical bars show the physical structure of the tree. For each node in
the tree, there is a line like this one:

+-LEAF 0x00000000 - 0x66334873 @0x100

The first word in the line is either LEAF or INTERNAL. Next are two hexadecimal numbers
that give the range of keys covered by the node, in this case 0x0 through 0x66334873. Finally, the
“@0x100” indicates that the node is at offset 0x100 (decimal 256) in the file.

Below an internal node, all the nodes below it are printed. Below a leaf, the output gives the
keys in that leaf. An important detail is that the keys are printed in order, so if you’re using binary
search they should be sorted. Similarly, the keys in any given node (internal or leaf) should fall
into a subrange of the keys in its parent.

9 Finishing the Lab
When you are done with the lab, use cs105submit to submit ONLY btree.c. Remember that
you can submit more than once; we will grade only the last submission. So submit early and often!
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