CS 105

“Tour of the Black Holes of Computing!”

Floating Point

Topics
m |EEE Floating-Point Standard
= Rounding
= Floating-Point Operations
m Mathematical Properties

B €

Floating-Point Puzzles {2

m For each of the following C expressions, either:
® Argue that it is true for all argument values
o Explain why it is not true, ideally with an example

* x == (int) (float) x
int x = foo(); * x == (int) (double) x
float £ = bar(); + £ == (float) (double) £
double d = baz(); * d == (float) d

< £ == —(-6)

. . 3 == 2/3.0
Assume neither 2/ /

dnor £ is NaN . d<0.0 = ((d*2) < 0.0)
Assume a 32-bit e d>f = -f > -d
machine . d%*d>=0.0

¢ (d+£)-d == £

—2— CS 105

WAL €

Fractional binary numbers "

What is 1011.101,?

5/8
1

_3- €S 105

B €

Fractional Binary Numbers "

- [

‘ bi |bi-1| *** | bz ‘ b1 ‘ bolb.l ‘ b_z‘b_g eee b-j‘
12 —
1/4 LN)
1/8
Representation 27

= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number: i: by x 2

—4- k=—j CS 105

Fractional Binary Numbers: Examples

m Value Representation
53/4 101.11;
27/8 10.111:
17/16 1.0111;

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
® Numbers of form 0.111111...> are just below 1.0
= 1/2+1/4+1/8+..+1/2'+..— 1.0
= Use notation 1.0 — ¢

WAL €

CS 105

B €

Representable Numbers i

Limitation #1
= Can only exactly represent numbers of the form x/2%
e Other rational numbers have repeating bit representations

m Value Representation Decimal Representation
°1/3 0.0101010101[01]..2 0.333333333..
®1/5 0.001100110011[0011]...2 0.200000000...
® 110 0.0001100110011[0011]...2 0.100000000...

Limitation #2

m Just one setting of binary point within the w bits
e Limited range of numbers (very small values? very large?)

-6- CS 105

IEEE Floating Point

IEEE Standard 754

m Established in 1985 as uniform standard for floating-point arithmetic
e Before that, many idiosyncratic formats

= Supported by all major CPUs

Driven by numerical concerns
m Nice standards for rounding, overflow, underflow

= Hard to make go fast
© Numerical analysts predominated over hardware types in defining standard

WAL €

CS 105

B €

Floating-Point Representation : o

Numerical Form
m_1sM 2F
eSign bit s determines whether number is negative or positive (negative zero representable)

eSignificand M normally a fractional value in range [1.0, 2.0).
eExponent E weights value by a power of two

Encoding

| s I exp I frac
= MSB is sign bit
m exp field encodes E (emphasis on “encodes™)
m frac field encodes M (likewise)

-8- CS 105

Precision Options (Not to Scale)

Single precision: 32 bits

| s |exp |frac |

1 8bits 23 bits
Double precision: 64 bits

| s |exp |frac

1 11 bits 52 bits
Extended precision: 80 bits (Intel only)

WAL €

B €

) o

“Normalized” Values

When: exp # 000...0 and exp # 111...1

Exponent coded as a biased value: E = Exp — Bias
m Exp: unsigned value of exp field

m Bias = 21 — 1, where k is number of exponent bits
e Single precision: 127 (Exp: 1...254, E: -126...127)
e Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

Significand coded with implied leading 1: M = 1.xxx..x2
B xxx...x: bits of frac field

® Minimum when frac=000...0 (M = 1.0)
® Maximum when frac=111...1 (M = 2.0 - g)

| S |exp |frac | = Get extra leading bit for “free”
1 15 bits 63 or 64 bits
-9- CS 105 -10- CS 105
Normalized Encoding Example ' o Denormalized Values V= (-1)° M2 5
- E = 1- Bias

Value
float £ = 15213.0;
= 15213,5 = 11101101101101, =1.1101101101101,X 2'3

Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
Exponent

E = 13

Bias = 127

Exp = 140 = 10001100,

Floating-Point Representation (Class 02):

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
140: 100 0110 0

15213: 1110 1101 1011 01

11—

CS 105

Condition: exp = 000...0

Exponent value: £ = 1 — Bias (instead of E = 0 — Bias)

Significand coded with implied leading 0: M = 0.xxX...X2
m xxx..x: bits of frac

Cases
® exp = 000..0, frac = 000..0
e Represents zero value
e Note distinct values: +0 and -0 (why?)
® exp = 000..0, frac # 000..0
® Numbers closest to 0.0
e Equispaced

—-12- CS 105

WAL €

B €

Special Values iz Visualization: Floating-Point Encodings iz
Condition: exp = 111..1
Case: exp = 111..1, frac = 000..0 |‘°°| -Normalized | -Denorm ; +Denorm, +Normalized 'I"°|°
» Represents value o (infinity) i T j T i
m Operation that overflows NaN +0 | NaN)
= Both positive and negative
= E.g., 1.0/0.0 = -1.0/-0.0 = +%, 1.0/-0.0 = -
Case: exp = 111..1, frac # 000..0
m Not-a-Number (NaN)
= Represents case when no numeric value can be determined
1ot Bg- SAM(-1), @ - 0, 0 %0 cs 105 —14- s 105
HMC CK! HMC CS!
. . . i per
Tiny Floating-Point Example iz Values Related to the Exponent iz
8-bit floating-point representation Exp exp E 2z
m The sign bit is in the most significant bit. [0000 -6 1/64 (denorms)
= The next four bits are the exponent, with a bias of 7. ; ggg; ': 1;;‘21
m The last three bits are the frac 3 0011 -4 1/16
4 0100 -3 1/8
® Same general form as IEEE format 5 0101 -2 1/4
= Normalized, denormalized 6 0110 -1 1/2
. Lol 7 0111 0 1
= Representation of 0, NaN, infinity 8 1000 41 2
76 32 9 1001 +2 4
10 1010 +3 8
[s] =P l frac 11 1011 +4 16
12 1100 +5 32
13 1101 +6 64
14 1110 47 128
15 1111 n/a (inf, NaN)
-15- CS 105 -16- CS 105

WAL €

B €

. v=(-1)SMm2f 2 . . . 2
Dynamic Range n: E = Exp — Bias Distribution of Values gE:
s exp frac E Value d: E = 1- Bias o ©
0 0000 000 -6 0 6-bit IEEE-like format
0 0000 001 -6 1/8*1/64 = 1/512 *—closestto zero = e = 3 exponent bits
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512 u f = 2 fraction bits | s | - |
numbers .. ias is 2511
0 0000 110 -6 6/8*1/64 = 6/512 = Biasis 2%1-1=3 1 3 bits
0.0000 111 -6 7/8*1/64 = 7/512 + largest denorm
0 0001 000 -6 8/8*1/64 = 8/512 +— smallest norm . L i
0 0001 001 -6 9/8%1/64 = 9/512 Notice how the distribution gets denser toward zero.
0 0110 110 -1 14/8%1/2 = 14/16 /Svalues
, 0 0110 111 -1 15/8*1/2 = 15/16 *— closestto 1 below
Normalized 4 4117 900 o 8/8%1 =1
numbers 9117 go1 0 9/8%1 = 9/8 <+ closestto 1 above -15 -10 0 5
0 0111 010 o0 10/8*1 = 10/8 # Denormalized A Normalized Infinity]
0 1110110 7 14/8%128 = 224
0 1110 111 7 15/8*128 = 240 < largestnorm
0 111170060 "n/a"inE
-17- CS 105 -18- CS 105
HMC CS: HMC CS!
Distribution of Values (close-up view) iz Interesting Numbers iz
Description exp Numeric Value
6-bit IEEE-like format ero 00...00°00...00 00
= e = 3 exponent bits Smallest Pos. Denorm. 00...00 00...01 2- 123,52} X 2~ (126,1022)
=3 exponent = Single (float) = 1.4 X 10~
" f? 2 f.ractlon bits m Double = 4.9 X 10324
m Biasis 3 Largest Denormalized 00...00 11...11 (1.0 —g) X 2- 11261022}
= Single (float) = 1.18 X 10-38
A A A A A A A S 400ttt A A4 = Double =2.2 X 10-308
. 05 _ 0 . . .0'5 1 Smallest Pos. Normalized 00...01 1.0 X 2- (126.1022)
¢ Denormalized A Normalized M Infinity = Just larger than largest denormalized
One 01...11 1.0
Largest Normalized 11..10 11...11 (2.0 —g) X 2(127.1023)
= Single (float) = 3.4 X 10%8
m Double = 1.8 X 10308
-19- CS 105 -20- CS 105

Special Properties of Encoding

HMC_CS)y

Floating Point Operations: Basic Idea

HMC_CS)y

FP zero same as integer zero x +r y = Round(x + y)
= All bits =0
Can (almost) use unsigned integer comparison x X¢ y = Round(x X y)
m Must first compare sign bits
m Must consider -0 =0
= NaNs problematic Basic idea
e Will be greater than any other values = First compute exact result
® What should comparison yield? e g . .
. = Make it fit into desired precision
= Otherwise OK _ e Possibly overflow if exponent too large
© Denormalized vs. normalized ® Possibly round to fit into £rac
© Normalized vs. infinity
-21- CS 105 —-22- CS 105
HMC CS! HMC CS!
. S =
Rounding gE: Closer Look at Round-To-Even gE:
(©} (©}
Rounding Modes (illustrated with $ rounding) Default rounding mode
= Hard to get any other kind without dropping into assembly
m All others are statistically biased
$1.40 $1.60 $1.50 $2.50 —$1.50 eSum of set of positive numbers will consistently be over- or under-estimated
= Towards zero $1 $1 $1 $2 -$1 eNeed randomness
= Round down (-o) $1 $1 $1 $2 %2 Applying to other decimal places / bit positions
= Round up (+w) $2 $2 $2 B3 -# = When exactly halfway between two possible values:
m Nearest Even (default) $1 $2 $2 $2 -$2 eRound so that least significant digit is even
= E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)
-23- CS 105 —-24-

CS 105

Rounding Binary Numbers

Binary fractional numbers
= “Even” when least significant bit is 0

= Halfway when bits to right of rounding position = 100...,

Examples

= Round to nearest 1/4 (2 bits right of binary point)
Rounded Value

Value Binary Rounded Action

WAL €

CS 105

FP Multiplication

Operands
(~1)s M1 2E7 * (-1)s2 M2 2E2

Exact Result
(-1)s M 2E
m Signs: s1”s2
m Significand M: M1* M2
= Exponent E: E1+E2
Fixing
m If M > 2, shift Mright, increment E
u |f E out of range, overflow
= Round M to fit £rac precision

Implementation
—26-m Biggest chore is multiplying significands

B €

CS 105

23/32 10.00011, 10.00, (<1/2—down) 2
23/16 10.00110, 10.01, (>1/2—up) 21/4
27/8 10.11100, 11.00, (1/2—up) 3
25/8 10.10100, 10.10, (1/2—down) 21/2
—25—
FP Addition
Operands [— Et-£2 —|
(~1)s M1 2E1 1) M1
(~1)2 M2 2E2
m Assume E7> E2 +
Exact Result)M]

(-1)s M 2E
m Sign s, significand M:
® Result of signed align & add

= Exponent E: E1
Fixing
m If M > 2, shift Mright, increment E

m if M <1, shift M left k positions, decrement E by k

m Overflow if E out of range
~%"~u Round M 1o fit £rac precision

WAL €

CS 105

Mathematical Properties of FP Add

Compare to those of Abelian Group

m Closed under addition?
e But may generate infinity or NaN

= Commutative?

m Associative?
e Overflow and inexactness of rounding

® (3.14+lel0)-1lel0 = 0, 3.14+(lel0-1lel0)

m 0 is additive identity?

m Every element has additive inverse?
® Yes, except for infinities & NaNs

Monotonicity

= a2b=a+c2b+c?
® Except for infinities & NaNs

—28—

B €

CS 105

HNC._ S,y

NC_ S,y

. 2
Mathematical Properties of FP Mult K] Floating Pointin C =
Compare to Commutative Ring C Guarantees Two Levels
= Closed under multiplication? Yes float single precision
e But may generate infinity or NaN double double precision
= Multiplication Commutative? Yes .
pication’ i Conversions
= Multiplication is Associative? No . . .
o Possibility of overflow, inexactness of rounding m Casting between int, float, and double changes numeric values
® Ex: (le20*1e20) *1e—-20= inf, 1e20* (le20*1e-20) = 1e20 ® Double OF float t0 int
= 1 is multiplicative identity? Yes ° Truncates fractlonal part
Multiplication distributes over addition? ¢ Like rounding toward zero
= Multip _c_a_ o S u e_s overa on? . No o Not defined when out of range
© Possibility of overflow, inexactness of rounding G Il turates to TMi ™
® 1e20* (1e20-120)= 0.0, 1e20*1e20 — 1le20*1e20 =NaN > Generally saturates to Tiflin or Tifax
® int to double
Monotonicity e Exact conversion, as long as int has < 53-bit word size
ma2b &c20 =a*c2b*c? Almost m int to float
o Except for infinities & NaNs o Will round according to rounding mode
-29- €S 105 -30- €S 105
THMC. Cs! IHMC. Cs!
. . . . 2
Answers to Floating-Point Puzzles atd Ariane 5 s
©} ©}
int x = ..; .
froat £ Assume neither m Exploded 37 seconds after liftoff
oa = ey i
dnor £is NAN = Cargo worth $500 million
double d = ..;
o Why
* x == (int) (float) x No: 24 bit significand = Computed horizontal velocity as
* x == (int) (double) x Yes: 53 bit significand floating-point number
* f == (float) (double) £ Yes: increases precision = Converted to 16-bit integer
* d == (float) d No: loses precision n Worked OK for Ariane 4
¢ £ == —(-f) Yes: Just change sign bit = Overflowed for Ariane 5
. 2/3 == 2/3.0 No: 2/3 == e Used same software
« d< 0.0 = ((d*2) < 0.0) Yes!
e d>f =>-f>-d Yes!
« d*d>=0.0 Yes!
¢ (d+£f)-d == No: Not associative
-31- €S 105 -32- €S 105

HMC CS;)

Summary '

IEEE floating point has clear mathematical properties
= Represents numbers of form M X 2

m Can reason about operations independent of implementation
e As if computed with perfect precision and then rounded
m Not the same as real arithmetic
o Violates associativity/distributivity
e Makes life difficult for compilers & serious numerical applications programmers

-33- CS 105

