CS 105 "Tour of the Black Holes of Computing!"

Floating Point

Topics

- IEEE Floating-Point Standard
- Rounding
- Floating-Point Operations
- Mathematical Properties

Floating-Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
- Explain why it is not true, ideally with an example

int x = foo();
float f = bar();
double d = baz();

* x == (int)(float) x
* x == (int)(double) x
* f == (float)(double) f

d == (float) df == -(-f)

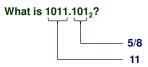
Assume neither d nor f is NaN • 2/3 == 2/3.0

d nor f is NaN $\begin{array}{ccc} \bullet & d < 0.0 & \Rightarrow & ((d * 2) < 0.0) \\ \\ \text{Assume a 32-bit} & \bullet & d > f & \Rightarrow & -f > -d \\ \end{array}$

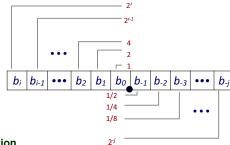
(d+f)-d == f

-2- CS 105

Fractional binary numbers



Fractional Binary Numbers



Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i} b_k \times 2^k$

CS 105

Fractional Binary Numbers: Examples

■ Value Representation
5 3/4 101.11₂
2 7/8 10.111₂
1 7/16 1.0111₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0 ε

-5- CS 105

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating-point arithmetic
 - . Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value	Representation	Decimal Representation		
1/3	0.0101010101[01]2	0.333333333		
1/5	0.001100110011[0011]2	0.20000000		
1/10	0.0001100110011[0011]2	0.100000000		

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

-6-

Floating-Point Representation

Numerical Form

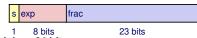
- -1s M 2E
- Sign bit s determines whether number is negative or positive (negative zero representable)
- Significand M normally a fractional value in range [1.0, 2.0).
- Exponent E weights value by a power of two

Encoding

- MSB is sign bit
- exp field encodes E (emphasis on "encodes")
- frac field encodes *M* (likewise)

Precision Options (Not to Scale)

Single precision: 32 bits



Double precision: 64 bits

Extended precision: 80 bits (Intel only)

-9-CS 105

"Normalized" Values

When: $\exp \neq 000...0$ and $\exp \neq 111...1$

Exponent coded as a biased value: E = Exp - Bias

- Exp: unsigned value of exp field
- $Bias = 2^{k-1} 1$, where k is number of exponent bits
- Single precision: 127 (Exp: 1...254, E: -126...127)
- Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

Significand coded with implied leading 1: $M = 1.xxx...x_2$

- xxx...x: bits of frac field
- Minimum when frac=000...0 (M = 1.0)
- Maximum when frac=111...1 (M = 2.0ϵ)
- Get extra leading bit for "free"

- 10 -CS 105

Normalized Encoding Example

- 11 -

```
float f = 15213.0;
  ■ 15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}
Significand
  M =
             1.11011011011012
               11011011011010000000000,
  frac=
Exponent
  E =
             13
  Bias =
             127
  Exp =
             140 = 10001100_{2}
               Floating-Point Representation (Class 02):
                          4 6 6 D B 4 0 0
               Binary:
                       0100 0110 0110 1101 1011 0100 0000 0000
```

100 0110 0

1110 1101 1011 01

140:

15213:

CS 105

Denormalized Values

 $V = (-1)^s M 2^E$ E = 1 - Bias

Condition: exp = 000...0

Exponent value: E = 1 - Bias (instead of E = 0 - Bias)

Significand coded with implied leading 0: $M = 0.xxx...x_2$

xxx...x: bits of frac

Cases

- 12 -

- exp = 000...0, frac = 000...0
- Represents zero value
- Note distinct values: +0 and -0 (why?)
- = exp = 000...0, frac \neq 000...0 • Numbers closest to 0.0
- Equispaced

Special Values

O S S I

Condition: exp = 111...1

Case: exp = 111...1, frac = 000...0

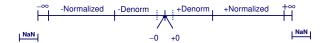
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

Case: exp = 111...1, $frac \neq 000...0$

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

CS 105

Visualization: Floating-Point Encodings

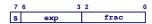


-14-

Tiny Floating-Point Example

8-bit floating-point representation

- The sign bit is in the most significant bit.
- The next four bits are the exponent, with a bias of 7.
- The last three bits are the frac
- Same general form as IEEE format
 - Normalized, denormalized
 - Representation of 0, NaN, infinity



Values Related to the Exponent

Exp	exp	E	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

-16- CS 105

-15-

Dynamic Range

 $V = (-1)^s M 2^E$ n: E = Exp - Bias

S 105

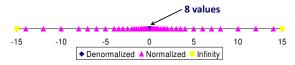
Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 2³⁻¹-1 = 3

s	exp	frac	
1	3-bits	2-bits	

Notice how the distribution gets denser toward zero.



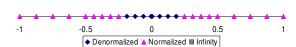
CS 105 - 18 -

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

- 17 -



CS 105 - 19 -

Interesting Numbers

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm. ■ Single (float) ≈ 1.4 ■ Double ≈ 4.9 X 10	X 10 ⁻⁴⁵	0001	2- {23,52} X 2- {126,1022}
Largest Denormalized ■ Single (float) ≈ 1.18 ■ Double ≈ 2.2 X 10	8 X 10 ⁻³⁸		$(1.0 - \epsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized Just larger than lar			1.0 X 2- {126,1022}
One	0111	0000	1.0
Largest Normalized ■ Single (float) ≈ 3.4 ■ Double ~ 1.8 ¥ 1.03	X 10 ³⁸	1111	$(2.0 - \epsilon) \times 2^{\{127,1023\}}$

Special Properties of Encoding

FP zero same as integer zero

■ All bits = 0

Can (almost) use unsigned integer comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - . Will be greater than any other values
 - . What should comparison yield?
- Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. infinity

-21-

Rounding

Rounding Modes (illustrated with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.
■ Towards zero	\$1	\$1	\$1	\$2	-\$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

-23-

Floating Point Operations: Basic Idea


```
x +_f y = Round(x + y)

x \times_f y = Round(x \times y)
```

Basic idea

- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac

-22- CS 105

Closer Look at Round-To-Even

Default rounding mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - •Sum of set of positive numbers will consistently be over- or under-estimated
 - Need randomness

Applying to other decimal places / bit positions

- When exactly halfway between two possible values:
- Round so that least significant digit is even
- E.g., round to nearest hundredth

 1.2349999
 1.23
 (Less than half way)

 1.2350001
 1.24
 (Greater than half way)

 1.2350000
 1.24
 (Half way—round down)

 1.2450000
 1.24
 (Half way—round down)

-24- CS 105

Rounding Binary Numbers

Binary fractional numbers

- "Even" when least significant bit is 0
- Halfway when bits to right of rounding position = 100...2

Examples

■ Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

- 25 -CS 105

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

FP Addition

CS 105

E1-E2 -

(-1)s2 M2

(-1)^s M

(-1)s1 M1

Operands

(-1)s1 M1 2E1 (-1)s2 M2 2E2

■ **Assume** *E1* > *E2*

Exact Result

 $(-1)^s M 2^E$

- Sign s, significand M:
 - Result of signed align & add
- Exponent E: E1

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- $^{-27}$ Round M to fit frac precision

• Except for infinities & NaNs

- 28 -

FP Multiplication

Operands

 $(-1)^{s1} M1 \ 2^{E1} \ * \ (-1)^{s2} M2 \ 2^{E2}$

Exact Result

 $(-1)^s M 2^E$

■ Sign s: s1 ^ s2

■ Significand M: M1 * M2

■ Exponent *E*: *E*1 + *E*2

Fixing

Implementation

-26-■ Biggest chore is multiplying significands

CS 105

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition? Yes But may generate infinity or NaN

■ Commutative? Yes

Associative? No Overflow and inexactness of rounding

 \bullet (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

0 is additive identity? Yes

■ Every element has additive inverse? **Almost** • Yes, except for infinities & NaNs

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$? **Almost**

Mathematical Properties of FP Mult

Compare to Commutative Ring

•	Closed under multiplication? But may generate infinity or NaN	Yes
	Multiplication Commutative?	Yes
•	Multiplication is Associative? • Possibility of overflow, inexactness of rounding	No
	• Ex: (1e20*1e20) *1e-20=inf, 1e20* (1e20*1e-20) = 1e	20
	1 is multiplicative identity?	Yes
-	Multiplication distributes over addition? • Possibility of overflow, inexactness of rounding	No

• 1e20*(1e20-1e20) = 0.0, 1e20*1e20 - 1e20*1e20 = NaN

Monotonicity

■ $a \ge b$ & $c \ge 0$ $\Rightarrow a * c \ge b * c$? • Except for infinities & NaNs

Almost

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double Or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - » Generally saturates to TMin or TMax
- int to double
- Exact conversion, as long as int has ≤ 53-bit word size
- int tO float
- Will round according to rounding mode

30 – CS 105

Answers to Floating-Point Puzzles

CS 105

CS 105

Assume neither d nor f is NAN

<pre>• x == (int)(float) x</pre>	No: 24 bit significand
<pre>• x == (int)(double) x</pre>	Yes: 53 bit significand
f == (float) (double) f	Yes: increases precision
<pre>• d == (float) d</pre>	No: loses precision
• f == -(-f)	Yes: Just change sign bit
· 2/3 == 2/3.0	No: 2/3 == 0
• $d < 0.0 \Rightarrow ((d*2) < 0.0)$	Yes!
• $d > f \Rightarrow -f > -d$	Yes!
• d * d >= 0.0	Yes!
• (d+f)-d == f	No: Not associative
- 31 -	

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million

Why

- Computed horizontal velocity as floating-point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

- CS 105

- 32 -

Summary IEEE floating point has clear mathematical properties ■ Represents numbers of form M X 2^E ■ Can reason about operations independent of implementation • As if computed with perfect precision and then rounded ■ Not the same as real arithmetic Violates associativity/distributivity • Makes life difficult for compilers & serious numerical applications programmers CS 105 - 33 -