
Programming with Threads

Topics

✁ Threads

✁ Shared variables

✁ The need for synchronization

✁ Synchronizing with semaphores

✁ Thread safety and reentrancy

✁ Races and deadlocks

CS 105
“Tour of the Black Holes of Computing!”

– 2 – CS 105

Traditional View of a Process

Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures

File descriptor table
brk pointer

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

– 3 – CS 105

Alternate View of a Process

Process = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write dataThread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code and Data

read-only code/data

stack
SP

PC

brk

Thread (main thread)

Kernel context:
VM structures

File descriptor table
brk pointer

– 4 – CS 105

A Process With Multiple Threads

Multiple threads can be associated with a process

✁ Each thread has its own logical control flow (sequence of PC values)

✁ Each thread shares the same code, data, and kernel context

✁ Each thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write dataThread 1 context:
Data registers
Condition codes
SP1
PC1

Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
VM structures

File descriptor table
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

stack 2

Thread 2 (peer thread)

– 5 – CS 105

Logical View of Threads

Threads associated with a process form pool of peers

✁ Unlike processes, which form tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

– 6 – CS 105

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if their logical flows overlap
in time

Otherwise, they are sequential (same rule as for processes)

Examples:

✁ Concurrent: A & B, A&C

✁ Sequential: B & C

Time

Thread A Thread B Thread C

– 7 – CS 105

Threads vs. Processes

How threads and processes are similar

✁ Each has its own logical control flow

✁ Each can run concurrently (maybe on different cores)

✁ Each is context-switched

How threads and processes are different

✁ Threads share code and data, processes (typically) do not

✁ Threads are somewhat cheaper than processes
� Process control (creating and reaping) is roughly 5–8× as expensive as thread control

� Linux numbers:

» ~160K, 280K, 530K cycles minimum to create and reap a process (three machines)

» ~19K, 34K, 100K cycles minimum to create and reap a thread

– 8 – CS 105

Posix Threads (Pthreads) Interface

Pthreads: Standard interface for ~60 (!) functions that manipulate threads
from C programs

✁ Creating and reaping threads
� pthread_create, pthread_join

✁ Determining your thread ID
� pthread_self

✁ Terminating threads
� pthread_cancel, pthread_exit

� exit [terminates all threads], return [terminates current thread]

✁ Synchronizing access to shared variables
� pthread_mutex_init, pthread_mutex_[un]lock

� pthread_cond_init, pthread_cond_[timed]wait

– 9 – CS 105

The Pthreads "hello, world" Program

/*

* hello.c - Pthreads "hello, world" program

*/

#include "csapp.h"

void *howdy(void *vargp);

int main() {

pthread_t tid;

Pthread_create(&tid, NULL, howdy, NULL);

Pthread_join(tid, NULL);

exit(0);

}

/* thread routine */

void *howdy(void *vargp) {

printf("Hello, world!\n");

return NULL;

}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

Thread return value
(void **p)

Thread routine

Thread ID

– 10 – CS 105

Execution of Threaded “hello, world”

main thread

peer thread

return NULL;main thread waits for
peer thread to terminate

exit()

terminates
main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

(peer thread
terminates)

Pthread_create() returns

– 11 – CS 105

Pros and Cons of Thread-Based Designs

+ Threads take advantage of multicore/multi-CPU H/W

+ Easy to share data structures between threads

✁ E.g., logging information, file cache

+ Threads are more efficient than processes

– Unintentional sharing can introduce subtle and hard-to-reproduce errors!

✁ Ease of data sharing is greatest strength of threads, but also greatest weakness

✁ Hard to know what’s shared, what’s private

✁ Hard to detect errors by testing (low-probability failures)

– 12 – CS 105

Shared Variables in Threaded C Programs

Question: Which variables in a threaded C program are shared variables?

✁ Answer not as simple as “global variables are shared” and “stack variables are
private”

Definition: A variable x is shared if and only if multiple threads reference
some instance of x.

Requires answers to the following questions:

✁ What is the memory model for threads?

✁ How are variables mapped to memory instances?

✁ How many threads reference each of these instances?

– 13 – CS 105

Threads Memory Model

Conceptual model:

✁ Each thread runs in larger context of a process

✁ Each thread has its own separate thread context

� Thread ID, stack, stack pointer, program counter, condition codes, and general-purpose registers

✁ All threads share remaining process context

� Code, data, heap, and shared library segments of process virtual address space

� Open files and installed handlers

Operationally, this model is not strictly enforced:

✁ Register values are truly separate and protected

✁ But any thread can read and write the stack of any other thread

Mismatch between conceptual and operational model is a source of confusion and errors

– 14 – CS 105

Example Program to Illustrate Sharing

char **ptr; /* global */

int main()

{

int i;

pthread_t tid;

char *msgs[N] = {

"Hello from foo",

"Hello from bar"

};

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

// Pthread_join omitted

Pthread_exit(NULL);

}

/* thread routine */

void *thread(void *vargp)

{

int myid = (int)vargp;

static int svar = 0;

printf("[%d]: %s (svar=%d)\n",

myid, ptr[myid], ++svar);

return 0;

}

Peer threads reference main thread’s stack
indirectly through global ptr variable

– 15 – CS 105

Mapping Variable Instances to Memory

Global variables

✁ Def: Variable declared outside of a function

✁ Virtual memory contains exactly one instance of any global variable

Local variables

✁ Def: Variable declared inside function without static attribute

✁ Each thread stack frame contains one instance of each local variable

Local static variables

✁ Def: Variable declared inside function with the static attribute

✁ Virtual memory contains exactly one instance of any local static variable.

– 16 – CS 105

Mapping Vars to Memory Instances

char **ptr; /* global */

int main()

{

int i;

pthread_t tid;

char *msgs[2] = {

"Hello from foo",

"Hello from bar"

};

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

/* thread routine */

void *thread(void *vargp)

{

int myid = (int)vargp;

static int svar = 0;

printf("[%d]: %s (svar=%d)\n",

myid, ptr[myid], ++svar);

}

Global var: 1 instance (ptr [data])

Local static var: 1 instance: svar [data]

Local automatic vars: 1 instance: i.m, msgs.m

Local automatic var: 2 instances:
myid.p0[peer thread 0’s stack],
myid.p1[peer thread 1’s stack]

– 17 – CS 105

Shared Variable Analysis

Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes

svar no yes yes

i.m yes no no

msgs.m yes yes yes

myid.p0 no yes no

myid.p1 no no yes

Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

✁ ptr, svar, and msgs are shared.

✁ i and myid are NOT shared.

– 18 – CS 105

Synchronizing Threads

Shared variables are handy...

…but introduce the possibility of nasty synchronization errors.

– 19 – CS 105

badcnt.c: An Improperly Synchronized
Threaded Program

unsigned int cnt = 0; /* shared */

int main()

{

pthread_t tid1, tid2;

Pthread_create(&tid1, NULL,

count, NULL);

Pthread_create(&tid2, NULL,

count, NULL);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

if (cnt == (unsigned)NITERS*2)

printf("OK cnt=%d\n",

cnt);

else

printf("BOOM! cnt=%d\n",

cnt);

return 0;

}

/* thread routine */

void *count(void *arg)

{

int i;

for (i = 0; i < NITERS; i++)

cnt++;

return NULL;

}

linux> ./badcnt

BOOM! cnt=198841183

linux> ./badcnt

BOOM! cnt=198261801

linux> ./badcnt

BOOM! cnt=198269672

cnt should be

200,000,000.
What went wrong?!

– 20 – CS 105

Assembly Code for Counter Loop

for (i = 0; i < NITERS; i++)

cnt++;

�������������	
���������
���������

movl $100000000, %edx

.L2:

movl cnt(%rip), %eax

addl $1, %eax

movl %eax, cnt(%rip)

subl $1, %edx

jne .L2

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

– 22 – CS 105

Concurrent Execution

Key idea: In general, any sequentially consistent interleaving is possible,
but some give an unexpected result!

✁ Ii denotes that thread i executes instruction I

✁ %rdxi is the content of %rdx in thread i’s context

�

✁

�

✁

�

✁

�

✁

�

✂

�

✂

�

✂

�

✂

�

✂

�

✁

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

	

	

	

�

�

�

�

�

�

�

 �������
����

✄

�������

✁

��

�

�

�

�

�

�

�

�

�

�

����

✂

��������

��
�
��������
��

��������

��
�
��������
��

– 23 – CS 105

Concurrent Execution (cont)

Incorrect ordering: two threads increment the counter, but the result is 1
instead of 2

�

✁

�

✁

�

✁

�

✂

�

✂

�

✁

�

✁

�

✂

�

✂

�

✂

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

	

	

	

	

	

�

�

�

�

�

 �������
����

✄

�������

✁

�

�

�

�

	

�

�

�

�

�

����

✂

�����

– 24 – CS 105

Concurrent Execution (cont)

How about this ordering?

We can analyze the behavior using a progress graph

�

✁

�

✁

�

✂

�

✂

�

✂

�

✂

�

✁

�

✁

�

✁

�

✂

�

�

�

�

�

�

�

�

�

�

 �������
����

✄

�������

✁

����

✂

	
	

	

�
� �

�

� �

� �����
�

– 25 – CS 105

Progress Graphs

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Progress graph depicts discrete
execution state space of
concurrent threads

Each axis corresponds to
sequential order of instructions
in a thread

Each point corresponds to a
possible execution state (Inst1,
Inst2)

E.g., (L1, S2) denotes state where
thread 1 has completed L1 and
thread 2 has completed S2

(L1, S2)

– 26 – CS 105

Trajectories in Progress Graphs

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

A Trajectory is sequence of legal
state transitions that describes one
possible concurrent execution of
the threads

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

– 27 – CS 105

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

L, U, and S form a critical section
with respect to the shared variable
cnt

Instructions in critical sections
(w.r.t. to some shared variable)
should not be interleaved

Sets of states where such
interleaving occurs form unsafe
regions

Unsafe region

– 28 – CS 105

Safe and Unsafe Trajectories

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region

Def: A trajectory is safe iff it
doesn’t enter any part of an
unsafe region

Claim: A trajectory is correct
(w.r.t. cnt) iff it is safe

– 30 – CS 105

Races

Race happens when program correctness depends on one thread reaching
point x before another thread reaches point y

void *thread(void *vargp);

/* a threaded program with a race */

int main() {

pthread_t tid[N];

int i;

for (i = 0; i < N; i++)

Pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);

exit(0);

}

/* thread routine */

void *thread(void *vargp) {

int myid = *((int *)vargp);

printf("Hello from thread %d\n", myid);

return NULL;

}

– 31 – CS 105

Enforcing Mutual Exclusion

Question: How can we guarantee a safe trajectory?

Answer: We must synchronize the execution of the threads so that they
can never have an unsafe trajectory.

✁ i.e., need to guarantee mutually exclusive access to critical regions

Classic solution:

✁ Semaphores (Edsger Dijkstra)

Other approaches

✁ Mutex and condition variables (Pthreads—ringbuf lab)

✁ Monitors (Java)

– 32 – CS 105

Pthread Mutexes

Part of Posix pthreads package

Only one thread can hold a given mutex at one time

✁ Mutex is associated with specific critical region or shared variable(s)

✁ Can use multiple mutexes to control different critical regions

pthread_mutex_lock:

✁ “Grabs” given mutex and returns

✁ If some other thread already has mutex, waits until it’s free

pthread_mutex_unlock:

✁ “Releases” mutex and makes it available to other threads

✁ If any threads are waiting for mutex, wakes one up at random and gives mutex to it

– 33 – CS 105

Sharing With Pthread Mutexes
/* goodcnt.c - properly sync’d

counter program */

#include <pthread.h>

#define NITERS 10000000

unsigned int cnt; /* counter */

pthread_mutex_t mutex; /* lock */

int main()

{

pthread_t tid1, tid2;

pthread_mutex_init(&mutex, NULL);

/* create 2 threads and wait */

...

if (cnt == (unsigned)NITERS*2)

printf("OK cnt=%d\n", cnt);

else

printf("BOOM! cnt=%d\n", cnt);

return 0;

}

/* thread routine */

void *count(void *arg)

{

int i;

for (i = 0; i < NITERS; i++) {

pthread_mutex_lock(&mutex);

cnt++;

pthread_mutex_unlock(&mutex);

}

return NULL;

}

Why not just put
lock/unlock around

the whole loop?

– 34 – CS 105

Unsafe region

Forbidden region

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section with
lock and unlock operations on
mutex named m

Creates forbidden region that
encloses unsafe region and is
never touched by any trajectory

Thread 1
H1 Lck(m) L1 U1 S1 Unlck(m) T1

Thread 2

H2

Lck(m)

L2

U2

S2

Unlck(m)

T2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0 -1 -1 -1 -1 0 0

0 0 -1 -1 -1 -1 0 0

0 0 -1 -1 -1 -1 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

– 35 – CS 105

deadlock
region

Deadlock

Lck(m) Unlck(m)

Unlck(n)

Thread 1

Thread 2

Lck(n)

Lck(n) Unlck(n)

forbidden
region for m

forbidden
region for n

Lck(m)

Unlck(m) deadlock
state

Locking introduces potential for
deadlock: waiting for a condition that
will never be true.

Any trajectory that enters deadlock
region will eventually reach deadlock
state, waiting for either m or n to

become nonzero.

Other trajectories luck out and skirt
deadlock region.

Unfortunate fact: deadlock is often
non-deterministic (thus hard to
detect).

– 36 – CS 105

Synchronization With Pthread Conditions
Often need more than just mutual exclusion

✁ Thread B wants to wait for thread A to do something (X)

✁ Simple approach: mutex, “Did A do X?”, release mutex, loop

� Called “polling”

� Wasteful of CPU

✁ Better approach: pthread conditions

� B says “Wait for A to tell me about X”

� A says “I did X”

� B continues

Pthread condition variables

✁ One special variable per thing that can happen (e.g., “x_happened”)

✁ Also need associated mutex

✁ Thread B must grab mutex (we’ll see why in a moment), then calls pthread_cond_wait

� Process of waiting releases mutex, pauses until X happens, then re-grabs mutex

✁ Thread A simply calls pthread_cond_signal

� No need to hold mutex (but OK if you do)

� IMPORTANT: If nobody is waiting, the signal is lost!

– 37 – CS 105

Pthread Waiting
pthread_cond_t condition = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

...

int some_other_variable;

...

pthread_mutex_lock(&mutex);

while (!some condition on some variables)

pthread_cond_wait(&condition, &mutex);

do something with those variables--we hold the mutex!

pthread_mutex_unlock(&mutex);

Decision to wait is based on “outside” variables (example coming)

✁ Must check condition while holding a mutex

✁ Decision to wait must be made atomically

� Otherwise, could decide to wait, then other thread could signal before we actually wait

� Remember signals are lost if nobody is waiting

Must re-check condition after being awoken

✁ Possible that another thread got mutex first and changed status
– 38 – CS 105

Pthread Synchronization (Sender)

int nsleeps = 0;

void* sender(void* data)

{

int i;

for (i = 0; i < NPASSES; i++) {

sleep(1);

printf("Sender slept %d time(s)\n", i + 1);

pthread_mutex_lock(&mutex);

++nsleeps;

pthread_mutex_unlock(&mutex);

pthread_cond_signal(&slept);

}

return NULL;

}

– 39 – CS 105

Pthread Synchronization (Receiver)
void* receiver(void* data)

{

int total_sleeps = 1;

while (1) {

pthread_mutex_lock(&mutex);

if (total_sleeps >= NPASSES) {

pthread_mutex_unlock(&mutex);

printf("\tReceiver saw %d total sleeps\n", total_sleeps);

return NULL;

}

while (nsleeps < total_sleeps) {

pthread_cond_wait(&slept, &mutex);

}

pthread_mutex_unlock(&mutex);

printf("\tReceiver saw sleep number %d...", total_sleeps);

++total_sleeps;

if (nsleeps < total_sleeps) {

int sleep_time = random() % 4;

printf("sleeping %d second(s)\n", sleep_time);

sleep(sleep_time);

}

else

printf("continuing\n");

}

} – 40 – CS 105

Thread Safety

Functions called from a thread must be thread-safe

We identify four (non-disjoint) classes of thread-unsafe functions:

✁ Class 1: Failing to protect shared variables

✁ Class 2: Relying on persistent state across invocations

✁ Class 3: Returning pointer to static variable

✁ Class 4: Calling thread-unsafe functions

– 41 – CS 105

Thread-Unsafe Functions

Class 1: Failing to protect shared variables

✁ Fix: Use pthread mutex lock and unlock operations

✁ Issue: Synchronization operations will slow down code

✁ Example: goodcnt.c

– 42 – CS 105

Thread-Unsafe Functions (cont)

Class 2: Relying on persistent state across multiple function invocations

✁ Random number generator relies on static state

✁ Fix: Rewrite function so that caller passes in all necessary state

/* rand - return bad pseudo-random integer on 0..32767 */

static unsigned int next = 1;

int rand(void)

{

next = next*1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand - set seed for rand() */

void srand(unsigned int seed)

{

next = seed;

}

– 43 – CS 105

Thread-Unsafe Functions (cont)

Class 3: Returning pointer to
static variable

Fixes:

✁ 1. Rewrite code so caller passes
pointer to struct

» Issue: Requires changes in caller
and callee

✁ 2. Lock-and-copy

» Issue: Requires only simple
changes in caller (and none in
callee)

» However, caller must free
memory

hostp = Malloc(...);

gethostbyname_r(name, hostp);

struct hostent

gethostbyname(char name)

{

static struct hostent h;

<contact DNS and fill in h>

return &h;

}

struct hostent

*gethostbyname_ts(char *p)

{

struct hostent *q = Malloc(...);

pthread_mutex_lock(&mutex);

p = gethostbyname(name);

*q = *p; /* copy */

pthread_mutex_unlock(&mutex);

return q;

}

Why outside the mutex?

– 44 – CS 105

Thread-Unsafe Functions

Class 4: Calling thread-unsafe functions

✁ Calling one thread-unsafe function makes an entire function thread-unsafe

✁ Fix: Modify the function so it calls only thread-safe functions

– 45 – CS 105

Reentrant Functions

A function is reentrant iff it accesses NO shared variables when called from multiple
threads

✁ Reentrant functions are a proper subset of the set of thread-safe functions

✁ NOTE: The fixes to Class 2 and 3 thread-unsafe functions require modifying the function to
make it reentrant (only first fix for Class 3 is reentrant)

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

– 46 – CS 105

Thread-Safe Library Functions

Most functions in the Standard C Library (at the back of your K&R text) are
thread-safe

✁ Examples: malloc, free, printf, scanf

All Unix system calls are thread-safe

Library calls that aren’t thread-safe:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r

ctime 3 ctime_r

gethostbyaddr 3 gethostbyaddr_r

gethostbyname 3 gethostbyname_r

inet_ntoa 3 (none)

localtime 3 localtime_r

rand 2 rand_r

– 47 – CS 105

Threads Summary

Threads provide another mechanism for writing concurrent programs

Threads are growing in popularity

✁ Somewhat cheaper than processes

✁ Easy to share data between threads

However, the ease of sharing has a cost:

✁ Easy to introduce subtle synchronization errors

✁ Tread carefully with threads!

For more info:

✁ D. Butenhof, “Programming with Posix Threads”, Addison-Wesley, 1997

