CS 105
Tour of the Black Holes of Computing

Cache Memories

Topics
= Generic cache-memory organization
m Direct-mapped caches
m Set-associative caches
= Impact of caches on performance

Locality

Principle of Locality: Programs tend to use data and instructions with
addresses equal or near to those they have used recently

Temporal locality: < 7
» Recently referenced items are likely I

to be referenced again in the near future

Spatial locality:
m ltems with nearby addresses tend
to be referenced close together in time

LT]

{HMC €S}y
3

O

CsS105

€S}y
n

Locality Example

sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

Data references

n Reference array elements in
succession (stride-1 reference pattern).

n Reference variable sum each iteration. Temporal locality

Spatial locality

Instruction references
n Reference instructions in sequence.
n Cycle through loop repeatedly.

Spatial locality

Temporal locality

CsS105

Layout of C Arrays in Memory (review)

C arrays allocated in row-major order
= Each row in contiguous memory locations

Stepping through columns in one row:

m for (1 = 0; 1 < N; i++)
sum += a[0][i];

m Accesses successive elements
u If block size (B) > sizeof(a;) bytes, exploit spatial locality
® Miss rate = sizeof(a;) / B

Stepping through rows in one column:
m for (1 = 0; 1 < n; i++)
sum += a[i][0];
m Accesses distant elements

= No spatial locality!
o Miss rate =1 (i.e. 100%)

{HMC €S}y
3

CsS105

€S}y
n

Qualitative Estimates of Locality

HC_CS)y
n

Locality Example {4}
o

Claim: Being able to look at code and get a qualitative sense of its locality Question: Does this function have good locality with respect to array a?
is a key skill for a professional programmer.
. int sum_array_cols(int a[M] [N])
Question: Does this function have good locality with respect to array a? q ¥ *
int i, j, sum = 0;
int sum_array_rows (int a[M] [N]) for (j = 0; j < N; j++) ‘é
t o o for (i = 0; i < M; i++)'f—
int i, j, sum = 0; sum += a[i] [j];
for (i = 0; i < M; i++) } EOETED S0
for (j = 0; j < N; j++)
sum += a[i][j];
return sum;
}
-5- CsS105 -6- CsS105
[HMIC_CS), HMIC_CS))
-) - :
Cache Memories A% Typical Speeds < o{ %}

System bus Memory bus

m Main
memory

11— CS105

Registers: 1 clock (= 400 ps on 2.5 GHz processor) to get 8 bytes

Level-1 (L1) cache: 3-5 clocks for 3264 bytes

L2 cache: 10-20 clocks, 32-64 bytes

L3 cache: 20-100 clocks (multiple cores make things slower), 32-64 bytes
DRAM: 100-300 clocks, 32-64 bytes

SSD: 75,000 clocks and up (high variance), 4096 bytes

Hard drive: 5,000,000-25,000,000 clocks, 4096 bytes
= Ouch!

—12- CsS105

General Cache Concepts

THNC CS)
3

THNC CS)
3

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Smaller, faster, more expensive ic i .
Cache || 4 ” 9 ” 10 ” 3 | memory caches a subset of Cache || 8 ” 9 ” 14 ” 3 || Bl.o,d(b’smcad'&
the blocks Hit!
Data is copied in block-sized
transfer units
Larger, slower, cheaper memory
Memory | 0 ” 1 ” 2 ” 3 | viewed as partitioned into “blocks” Memory | 0 ” 1 ” 2 ” 3 |
Cadl s [e J[7] e s [e J[7]
L8 [o [0][1] L8 [o J[10 J[11]
[12][13][1a][15] [12 [13][1a][15]
e0ececcccccccccoe eeececcccccccccoe
-13- CS105 —14- CsS105
THNC CS) H {HMCCsyy
;4 General Caching Concepts: 3"

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Block b is not in cache:
St i o [[e |
Miss!
Block b is fetched from
Request: 12
memory
iy Block b is stored in cache
emory
l 0 ” 1 ” 2 ” 3 l * Placement policy:
| 4 || 5 || 6 || 7 | determines where b goes
| 8 ” 9 ” 10 ” 11 | * Replacement policy:
| 12 ” 13 ” 14 ” 15 | determ.ineswhichblock
gets evicted (victim)
R

— 15—

CS105

Types of Cache Misses

Cold (compulsory) miss
= Cold misses occur because the cache is empty.

Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of
the block positions at level k
e E.g. Block i at level k+1 must go in block (i mod 4) at level k

= Conflict misses occur when the level k cache is large enough, but multiple data
objects all map to the same level k block
e E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

Capacity miss

m Occurs when set of active cache blocks/{working set)|is larger than the cache

T cs105

THNC CS)
3

General Cache Organization (S, E, B)

Not always power of 2! O

E lines per set
A
- N
—

Cache size: [[l Jeooof]

C =S xE x Bdata bytes
I XY |

Set # = hash code
ik and O I Jooee]
Tag = hash key
eeecccsccccccccccccscccsscce
I I[Joeeel |
| D] GLE==Te4]
I
17— valid bit

B = 2" bytes per cache block (the data) CS105

HAC_C§))
Cache Read) * Locate set : ;
[Ly o Jve e o
- (o]
sek” @

E = 2¢ lines per set * Yes + line valid: hit

A . il
- ~ l&g%‘}}ge‘?w starting
| I Joee| | FRang,
AddreM L
I I Joeeel |
s=sesd | I Jooee| |

cecesessceaccncsacansencns
I | oo |

data begins at this offset

MA,uJ°L b‘fr
bo—

=
[] Do GLEL—Te]|

valid bit

—-18- B = 2P bytes per cache block (the data) CS105

THNC CS)
3

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume cache block size 8 bytes

Address of int:

)
|0 Go] CEEGEGEE| e oo
| Cee] EEGLEGED] T
S=255ets<
|B G PEEGLEGED
|| G CLEEEELED|
19— Cs105

THNC CS)
3

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume cache block size 8 bytes

Address of int:

Valid? + Match: both yes = hit

L]
[
[[J G CLEGEEED
|

Block offset

—20- CsS105

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume cache block size 8 bytes

Address of int:

Valid? +

/ﬁfé'

atch: both yes = hit

1
tag | [o]1]2]3]a]s]6]7]

Block offset

int (4 Bytes) is here
If tag doesn’t match: old line is evicted and replaced

—21—

THNC CS)

CS105

Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 000,], miss
[0001,], hit
@1112]‘ miss
000,], miss
{0000,] miss
Block
MI[0-1]

etl
e f{ Eetz
Set3 | 1 0 M[6-7]

—22-

THNC CS)

CsS105

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume cache block size 8 bytes

Address of short int:

Cee] CEEEREEED	(M Gae] BEEREETE)
Gz] GEEEREELH	[Ceel BEEEREEEE)
5 Cee] CLEEREED	(M Gae] PEEREETE)

®0ccccc0cccccccccccccc0000000000000000000 000

|5 Cee] CLEEREED| (M Gae] PEEREETE)|

Find set

—23—

THNC CS)
3

CS105

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume cache block size 8 bytes

Address of short int:

Compare both

Valid? + [Match: both yes = hit

|
[(o] CEELEEE) [Cec) CREEEERD]

Block offset

—24-

THNC CS)
3

CsS105

HNC_ (53

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume cache block size 8 bytes

Address of short int:

Compare both

Valid? + | Match: both yes = hit

|
[[) Gl CEEGEEED) [Cosd FEEGEGED]

block offset
short int (2 bytes) is here

,\/\oj\t‘cfﬂ/\b\ﬂ ,L}

No match:

* One line in set is selected for eviction and replacement

* Replacement policies: random, least recently used/(LRU), ..\

o5 cs105

2-Way Set-Associative Cache Simulation

THNC CS)
3

@b-l M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [0000,], miss
1 0001,], hit
7 12]' miss
8 [1000,], miss
0 [0000,] @ l?{ %& +

v Tag Block

setof1 oo mpo1]
(1 |10 [m[so] |

set1
o1]

— 26—

CsS105

€S}y
n

What About Writes?

Multiple copies of data exist:
m L1, L2, L3, Main Memory, Disk
What to do on a write hit?
m Write-through (write immediately to memory)
m Write-back (defer write to memory until replacement of Iine)&
o Need a “dirty” bit (line different from memory or not)
What to do on a write miss?
m Write-allocate (load into cache, update line in cache)gk
e Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)
Typical
m Write-through + No-write-allocate

m Write-back + Write-allocate
—27- cs105

Intel Core i7 Cache Hierarchy

Processor package
“Core 0

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

’ L3 unified cache ‘ §|I|° éa"c?,'éif 64 bytes for

(shared by all cores)

[M therboar
bt pfayide,

Main memory
—28—

THNC CS)
3

CsS105

€S}y
n

Cache Performance Metrics

Miss Rate

= Fraction of memory references not found in cache
(misses / accesses) = 1 - hit rate
m Typical numbers (in percentages):
® 3-10% for L1
® Can be quite small (e.g., < 1%) for L2, depending on size, etc.
Hit Time
= Time to deliver a line in the cache to the processor
® Includes time to determine whether line is in the cache
= Typical numbers:
® 4 clock cycles for L1
® 10 clock cycles for L2
Miss Penalty

m Additional time required because of a miss
® Typically 50-200 cycles for main memory

—29— CS105

HC_CS)y
n

Let’s Think About Those Numbers

Huge difference between a hit and a miss
= Could be 100x, e.g., for L1 vs. main memory

Would you believe 99% hits is twice as good as 97%?

= Consider:
Cache hit time of 1 cycle
Miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01* 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”

—30- CsS105

€S}y
n

Writing Cache-Friendly Code

Make the common case go fast
m Focus on the inner loops of the core functions

Minimize misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
by our understanding of cache memories

31 cs105

HC_CS)y
n

Matrix-Multiplication Example SE
Description: Variable sum

= Multiply N x N matrices /* ijk */ held in register

= Matrix elements are doubles (8 bytes) | for (+ = 0; i <N; i) {

= O(N?) total operations Bm =0 I SER 5 M

sum = 0.0; ¥——

= N reads per source element for (k = 0; k < N; k++)

= N values summed per destination sum += a[i] [k] * b[k][3];
e But may be able to keep in register c[il[j] = sum;

matmult/mm.c

_35- cs105

Miss-Rate Analysis for Matrix Multiply

Assume:

HNC_ (53

= Block size = 32B (big enough for four doubles)

m Matrix dimension (N) is very large
e Approximate 1/N as 0.0

m Cache is not even big enough to hold multiple rows

Analysis Method:
m Look at access pattern of inner loop

Matrix Multiplication (ijk)

/* ijk */
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
sum = 0.0;
for (k = 0; k < n; k++)
sum += a[i] [k] * b[k][]];
c[i][3] = sum;

THNC CS)
3

Inner loop:

()]

—o]|
A B

C

]

} TR Row-wise Column- Fixed
. . -, wise
3 - k x 3 Misses per inner loop iteration:
i I i I k A E g
c A B 0.25 1.0 0.0
—36- Ccs105 —a7- Ccs105
HNC_ (53 HNC_C5))
. T . . 5 . T . .)
Matrix Multiplication (jik) Matrix Multiplication (kij) :
/* jik */ /¥ kiy */
for (3 = 0; j < n; j++) { Inner loop: for (k = 0; k < n; k++) { Inner loop:
for (i = 0; i < n; i++) { (*,j) for (i = 0; i < n; i++) { (*,j)
sum = 0.0; - (i.j) r = a[il [k]; ik) (k) L,
for (k = 0; k < n; k++) (i,") for (j = 0; j < n; j++) (I’)
sum += a[i] [k] * b[k][j]; A B ¢ c[i][j] += r * b[k][3j]; A B C
e N ’ .
} }
} TR Row-wise Column- Fixed TR Fixed Row-wise Row-wise
wise

Misses per inner loop iteration:

A B ¢
0.25 1.0 0.0

—38-

CS105

—39-

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

CsS105

Matrix Multiplication (ikj)

/* ikj */

€S}y
n

Matrix Multiplication (jki)

/* 3ki */

THNC CS)
3

for (i = 0; i < n; i++) { Inner loop: for (3 = 0; j < n; j++) { Inner loop
for (k = 0; k < n; k++) { (*.j) for (k = 0; k < n; k++) { (*,k) (*,j
r = al[il[k]; i.k) (k™) L, r = blk]1[j]; i
for (j = 0; j < n; j++) (%) for (i = 0; i < n; i++)
c[i]l[j] += r * b[k][3]; A B C c[i]l[]j] += a[il[k] * r; A C
} }
} }
AT Fixed Row-wise Row-wise TR Column- Fixed Column-
wise wise
Misses per inner loop iteration: Misses per inner loop iteration:
A B C A B C
0.0 0.25 0.25 1.0 0.0 1.0
_40- cs105 —41- cs105
HAC_C§)) HAC_C§))
- T - - 3 - . g -
Matrix Multiplication (Kkiji) Summary of Matrix Multiplication :
for (i = 0; i < n; i++) {
£ (3 =0; 3 i) {
7% k3% +/ et loon: T ijk (& jik):
for (k = 0; k < n; k++) { nner loop: for (k = 0; k < n; k++) «21
. . . * * . . oads, O stores
for (j = 0; j < n; j++) { (*/k) (*.j) sum += a[i][k] * b[k][3];
r = b[k][]jl; (k,j) clill3] = sum; * Misses/iter =1.25
for (i = 0; i < n; i++) L })
clil[3] += alil[k] * =; A B c
for (k = 0; k < n; k++) { B o
}] | | for (i = 0; i < n; i++) { kij (& ikj):
} r = alillkl;
matmult/mm.c . for (3 = 0; 3 < n; 3+4) * 2 loads, 1 store
Column- Fixed Column- cIL1[3] += = * bIK1[31; . .
wise wise) ¢ Misses/iter = 0.5
Misses per inner loop iteration: ¥
for (j = 0; j < n; j++) {
A B C for (k = 0; k < n; k++) { jki (& kji):
A 2 = r = blkl[3l;
1.0 0.0 1.0 for (i = 0; i <n; ith) * 2 loads, 1 store
clill3] += a[il[k] * =; o Misses/iter = 2.0
—42- cs105 —43- 4 cs105

Cache Miss Analysis

Assume:
= Matrix elements are doubles
m Cache block = 8 doubles
= Cache size C << n (much smaller than n)

€S}y
n

Cache Miss Analysis

Assume:
= Matrix elements are doubles
m Cache block = 8 doubles
= Cache size C << n (much smaller than n)

HC_CS)y
n

CS105

— 48—

First iteration: . Second iteration: - —_—
m n/8 + n = 9n/8 misses = * m Again: = *
n/8 + n = 9n/8 misses
8 wide
® Afterwards in cache: - % Total misses:
(schematic) u 9n/8 * n? = (9/8) * n
—45- 8 wide CS105 —46- CS105
HAC_C§)) HAC_C§))
- - - -) - - :
Blocked Matrix Multiplication Cache Miss Analysis :
¢ = (double *) calloc(sizeof (double), n*n); Assume:
/* Multiply n x n matrices a and b */ = Cache block = 8 doubles
void mmm(double *a, double *b, double *c, int n) { R
int i, j, k; m Cache size C << n (much smaller than n)
fox éi:(g?:of ‘j'?<in’f=jsl= . = Three blocks M fit into cache: 3B2< C
for (k = 0; k < n; k += B) - . . .
/* B x B mini matrix multiplications */ First (bIOCK) iteration: n/B blocks
for (il = i; il < i+B; i++) = B2/8 misses for each block —
£ (31 = j; 31 < j+B; 3j++)
o f:r (k:JL =Jk; ki < k-:nl-n; k++) = 2n/B * B%/8 = nB/4 | [[[[]] =
c[il*n + 311 += a[il*n + k1l*b[kl*n + j11; (omitting matrix c) = *
} matmult/bmm.c]
1
c a b = Block size B x B
= * m t n Afterwards in cache | [[[] =
[] [] = (schematic) = * m
A [|
[cs105

—47- Block size B x B

Cache Miss Analysis

Assume:
m Cache block = 8 doubles

m Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2<C

Second (block) iteration:
m Same as first iteration
= 2n/B * B%/8 = nB/4

Total misses:
= nB/4 * (n/B)? = n%(4B)

= Compare (9/8)n3 for naive implementation

— 49—

HNC_ (53

Blocking Summary N

No blocking: (9/8) * n3
Blocking: 1/(4B) * n3
(plus n?/8 misses for C)

Suggest largest possible block size B, but limit 3B2 < C!

Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
o Input data: 3n2, computation 2n?
e Every array element used O(n) times!
= But program has to be written properly

_50- cs105

Cache Summary

n/B blocks

K_H
L[]] |
- . B
- []
E

Block size Bx B

CS105
HNC_ (53

Cache memories can have significant performance impact

You can write your programs to exploit this!
m Focus on the inner loops, where bulk of computations and memory accesses occur.

= Try to maximize spatial locality by reading data objects with sequentially with stride

1.

= Try to maximize temporal locality by using a data object as often as possible once

it’s read from memory.

—51—

CS105

