HMC. C83y
5k

Physically Addressed System 2B
CS 105 O
“Tour of the Black Holes of Computing!” Main memory
0:
1:
Virtual Memory Phsical address 2
CcPU 4:
R —
7:
8:
Topics d
u Address translation M'l’E
= Motivations for VM
m Accelerating translation with TLBs Data word
Used in “simple” systems like embedded microcontrollers in devices
like car tires, elevators, and digital picture frames
_o- €S 105
IHC €Sy IHC €Sy
Virtually Addressed System : o What Is Virtual Memory? : o

CPU Chip

Virtual address
(VA)

400

Physical address 20
(PA)

Main memory

000:
100:

300:
400:)
500;
600:
700:
800:

Data word

Used in all modern servers, laptops, and smart phones

One of the great ideas in computer science
—-3-

Cs 105

If you think it’s there, and it is there...it’s real.

If you think it’s not there, and it really isn't there...it’s nonexistent.

If you think it’s not there, and it really is there...it's transparent.

If you think it’s there, and it’s not really there...it’s imaginary.

is imaginary memory: it gives you the illusion of a memory

arrangement that’s not physically there.

Cs 105

HMC €83y
5k

Address Spaces o i

Linear address space: Ordered set of contiguous non-negative integer addresses:
{0,1,2,3...}

Virtual address space: Set of N = 2" virtual addresses /\/
{0,1,2,3,...,N-1}

Physical address space: Set o@: 2m physical addresses (may have “holes”)
{0,1,2,3, ..., M-T}

Clean distinction between data (bytes) and their attributes (addresses)
Every byte in main memory hahysical address and zero or more virtual addresses

5 cs 105

HMC. C83y
5k

Why Virtual Memory (VM)? o

©)

Uses main memory efficiently

m Use DRAM as a cache for parts of a large virtual address space
Simplifies memory management

m Each process gets the same uniform linear address space
Isolates address spaces

= One process can’t interfere with another’s memory

m User program can’t access privileged kernel information and code
_6- Cs 105

IHC €Sy
H 2
VM as Tool for Caching {22
©)

Conceptually, virtual memory is an array of N contiguous bytes stored on

disk.
The contents of the array on disk are cached in physical memory (DRAM

cache)

= These cache blocks are called pages (size is P = 2° bytes) L{Z [< 6 {

Ry

Virtual memory Physical memory
v 0 [Gnalocted
VeT [Ccached ;N‘ Empty _|PPO
= | Uncached PP1
/ Unallocated Empty
Cached
Uncached >< Empty
Cached PP 2mh.1
VP 207-1 [Uncached w
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

_7- cs 105

HMC. CS3y
5k

DRAM “Cache” Organization - o
DRAM (main memory) cache organization driven by the enormous miss
penalty

[
= DRAM is about 70x slower than SRAM v
= Hard disk is about 70,000x slower than DRAM

Consequences
m Large page (block) size: typically 4-8 KB, sometimes 4 MB
m Fully associative
e Any VP can be placed in any PP
® Requires a “large” mapping function—different from CPU caches
= Highly sophisticated, expensive replacement algorithms
® Too complicated and open-ended to be implemented in hardware
m Write-back rather than write-through
-8- €S 105

HMC. €8y

)

Enabling Data Structure: Page Table 12

A page table is an array of page table entries (PTEs) that maps virtual
pages to physical pages.
m Per-process kernel data structure in DRAM

THMC €8}y
. 3. 4
Page Hit {2}
O
Page hit: reference to VM word that is in physical memory (DRAM cache
hit)

. Physical memory Virtual address Physical page (DRAM)
Physical page (DRAM! number or
number or od J Valid disk address z: 2 PPO
Valid _disk address s PPoO PTEO[0 nul ——L
PTEO[0 null %d 1 —
VP7 VP4 PP3
1 — VP4 PP 1 —
1 — 0 .
0 e 1 <
L Ll 0 null Virtual memory
0 null . Virtual memory o - \\ (disk)
o 20 (s Prer]
>l <] Memory-resident ~~
Memory-resident \\ \\ page table \\ \
page table AN * (DRAM) AN
(DRAM) . N
—-9- 1 -10- 1
9 T3] Cs 105 10 Cs 105
HMC. €8y
) G

Page Fault T
&)
Page fault: reference to VM word that is not in physical memory (DRAM
cache miss)

. Physical memory
Physical page

Virtual address number or (DRAM)
Valid _disk address HERD PPO
PTEO| 0 null VP2
1 VP 7
VP4 PP3
1 —
0 0
1 <
0 null Virtual memory
0 . RN (disk)
Tl]
Memory resident ~~_ \\
page table Sl ~
(DRAM) . vP3
Saal VP4
-11- VP7

Cs 105

Handling Page Fault ; o >

Page miss causes page fault (an exception)

. Physical memory
Physical page

Virtual address number or (DRAM)
Valid _disk address HERD PPO
PTEO| 0 null VP2
1 VP 7
VP4 PP3
1 —
0 0
1 <
0 null Virtual memory
0 . RN (disk)
Tl]
Memory resident ~~_ \\
page table Sl ~
(DRAM) S vP3
Saal VP4
-12- VP7

Cs 105

Handling Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Physical page

THMC. €83y
) G

Handling Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

THMC. €8y
) G

Physical page
number o (DRAM) number o (DRAM)
Valid _disk address dee PPO Valid disk address VPl PPO
PTEO| 0 null e PTEO| 0 null e
n VP 7 n VP 7
VP4 PP3 ©VvP3 PP3
1 — 1 —
) . 1 |
1 ~ (1] .
[“Aull Virtual memory 0 null ~. Virtual memory
0 - Sl (disk) 0 - S| (disk)
PTE7[1 <] PTE7L CRN N
Memory resident ~~ N N Memory resident ~~_
page table Ss _ page table
(DRAM) (DRAM)
-~
w7]
—13- Cwr] s 108 —14- ve7 s 105

Handling Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Offending instruction is restarted: page hit!
Physical page

Valid disk address

CF‘L/ PTEO[O m:n/

1

1 —

1 —
0 o

0 ___null—_H
P

1

(3 N N
PTE7 « Sao
Memory resident ~~ N
page table S
(DRAM)

Key point: Waiting until the miss to copy the page to

DRAM is known as demand paging
—15-

/

THMC. €83y
) G

Physical memory

(DRAM)
vP1 PPO
VP2
vP7
vP3 PP3

Virtual memory
(disk)
VP 1
VP2
VP3
VP4
VP 6

ve7 cs 105

Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Physical page
ual address number or
Valid disk address
PTEO| 0 null

vpS =>4
« Sy S
Memory resident‘“\\
page table AN
(DRAM)

1
1
1
0
1
0
1

PTE?7

— 16—

THMC. €83y
) G

Physical memory

(DRAM)
vP1 PPO
VP2
vP7
vP3 PP3

Virtual memory
(disk)

Cs 105

Locality to the Rescue Again! : o '

Virtual memory seems terribly inefficient, but it works because of locality.

At any point in time, programs tend to access a set of active virtual pages
called the working set
m Programs with better temporal locality will have smaller working sets

VM as Tool for Memory Management

Key idea: each process has own virtual address space

= Can view memory as a simple linear array

HMC. €83y

= Mapping function scatters addresses through physical memory
e Well-chosen mappings can improve locality in L1-L3 caches

. Address 0 Physical
Virtual translation ysica
. . - - Address VP 1 Address
If working set size < main memory size Spatce for VP2 — —PP2 | Space
m Good performance for one process after compulsory misses Process 1: (DRAM)
. . . . (e.g., read-onl
If SUM(working set sizes) > main memory size PP6 Doy code)
m Thrashing: Performance meltdown where pages are swapped (copied) in and out Virtual [PP8_|
continuously Address VP1
Space for VP2
Process 2:
17— €S 105 — 18- N_1|:| M.1|:| €S 105
IHC €Sy IHC €Sy
) . g m . . .)
VM as Tool for Memory Management n i Simplifying Linking and Loading 2B
Memory allocation L ; s Memory
i : Llnklng Kernel virtual memory | invisible to
m Each virtual page can be mapped to any physical page user code
. P . . . = Each program has similar virtual address User stack
m A virtual page can be stored in different physical pages at different times space (created at runtime) R
Sharing code and data among processes n Code, stack, and shared libraries always (stack
= Map virtual pages to the same physical page (here: PP 6) start at same virtual address 1 pointer)
0 Address 0 h / Memory-mapped region for
Virtual : Physica . shared libraries
Address T translation Address Loadmg
Space for VP2 \ PP 2 Space m execve allocates virtual pages for .text and
Process 1: (DRAM) .data sections & creates PTEs marked as T bk
N-1 l:l invalid | . Run-time heap
(e.g., read-only = The .text and .data sections are copied, (created by malloc)
PP 6 library code) page by page, on demand by the virtual —— . Loaded
. 0) ead/write segment
AV‘;ZUUI - PP8 memory system 7 (.data, .bss) f':’“
ress the
Space for VP2 —= Read-only segment executable
Process 2: @ (.init, .text, .rodata) file
-19- N.1|:| M.1|:| CS 105 -20- 5 Qmm) CS 105

HMC €83y
5k

HMC. C83y
5k

VM as Tool for Memory Protection abs VM Address Translation "z
O O
Extend PTEs (page table entries) with permission bits Virtual Address Space
Page-fault handler checks these before remapping n V={0,1,.., N-1}
m |f violated, send process SIGSEGV (segmentation fault) Physical Address Space N # //1
Physical =
Processi: USER READ WRITE EXEC Address Address Space " P={0,1,..., M-1}
vPo: [Yes | Yes | No \‘ Yes PP 6 Address Translation
VP 1: No)| Yes Yes Yes PP 4 | I— .
ﬂ?(‘_ﬁ Yes Yes ‘ No PP2 BRE2 " MAP._ V- PU {U}
. m For virtual address a:
O)f‘ / H RS ® MAP(a) = a’ if data at virtual address a is at physical address a’in P
<€ At —PP6 | ® MAP(a) = [J if data at virtual address a is not in physical memory
Processj: USER READ WRITE EXEC Address 55 » Either invalid or stored on disk
VPO:| No Yes No Yes PP9 PP9
VP1:| Yes Yes Yes Yes PP 6
VP2:| No | Yes | Yes | Yes PP11 PP 11
—21- cs 105 -22- cs 105
IHC €Sy IHC €Sy
.))
Address-Translation Symbols n i

Basic Parameters
= N =2": Number of addresses in virtual address space
= M = 2™ : Number of addresses in physical address space
u[P = 2¢ : Page size (bytes) | L/G TRz I~
= M’ = M/ P : Number of physical pages

C(ﬁoonents of the virtual address (VA)

There’s a bunch of these:
It’ll take time to learn them.
The highlighted ones are
the 8 most important.

VPN: Virtual page number
VPO: Virtual page offset
TLBI: TLB index

TLBT: TLB tag

Components of the physical address (PA)
PPN: Physical page number

PPO: Physical page offset{same as VPO)
PTE: Page table entry

= PTEA: Address of PTE

—23— Cs 105

Address Translation With a Page Table : o

. Virtual address

Page table

base register —{ Virtual page number (VPN)] Virtual page offset (VPO) ‘

(PTBR)

Page table address Page table
for process Valid Physical page number (PPN)

Valid bit = 0:
page not in memory
(page fault)

m-1 p p1 0
V= J [Physical page number (PN]_| Physical page offset (PPO)
Physical address = PPN x P + PPO
—24-— Cs 105

Address Translation: Page Hit

(HMC. €83y
5k

Address Translation: Page Fault

HMC. C83y
5k

Exception
|m————————— Page fault handler
CPU Chip \ P_g‘ : o
4 ore ! °
cPU MMU Cache/ CPU Chip —— PTEA fctim page
PA Memory o 9
(%) cPU 2 MMU PTE Cachey sk
Memok
/ o o emegy New page
Data v
o
. 1) Processor sends virtual address to MMU
1) Processor sends virtual address to MMU 2-3) MMU fetches PTE from page table in memory
2-3) MMU fetches PTE from page table in memory 4) Valid bit is zero, so MMU triggers page fault exception
4) MMU sends physical address to cache/memory 5) Handler identifies victim (and, if dirty, pages it out to disk)
5) Cache/memory sends data word to processor 6) Handler “pages in” (reads) new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction
-25- cs 105 -26- cs 105
(HMC. Csr[(HMC. Csr[
Integrating VM and Cache i Speeding up Translation With a TLB Bl
O &)
Page table entries (PTEs) are cached in L1 like any other memory word
PTE m PTEs may be evicted by other data references
CPU Chip I (A PTE m PTE hit still requires a small but significant L1 delay (3-4 cycles)
:IEA o Net effect is to double time needed to access data in L1 cache!
PTEA . . .
PTEA s Solution: Translation Lookaside Buffer (TLB)
CPU VA MMU oA A e Memory » Tiny set-associative (or fully associative) hardware cache inside MMU
miss = Maps virtual page numbers to physical page numbers
@ Data = Contains complete page table entries for small number of pages
L1
Data cache
VA: virtual , PA: physi , PTE: page table entry, PTEA = PTE address
_o7- €S 105

—28— Cs 105

HMC. 8}y
5

Accessing the TLB o i

&)
MMU uses the VPN portion of the virtual address to access the TLB:
_ L
T=2t
(sels = 2 VPN sets
TLBT hes tag
of line withinset n-1 p+tp+t-1 p p-1 0
TLB tag (TLBT) [TLB index (TLBI)[VPO
\/
seto [[V] [] v | [Geed e | ,
TC \gBI selects?e set
‘' n
set1 [[V) e] O] - <X
st [[0 Gl e]
—29— Cs 105

HNC

TLB Hit

CPU Chip
TLB
0 PTE
VPN o
° PA
VA
CPU MMU ° Cache/
Memory
Data
e

A TLB hit eliminates a cache or memory access to get the PTE

—30- Cs 105

s,
-

HMC. 8}y
5 4

TLB Miss g
o

CPU Chip -

VPN

CPU MMU Cache/
PA Memory

Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?
31— €S 105

HNC
)

Multi-Level Page Tables o

s,

&)
Level-2
Suppose: Tables
= 4KB (2'?) page size, 48-bit virtual address space, 8-byte PTE
Problem: ’ﬁ o
= Would need a 512 GB page table! Level-1 A
o 27272 * 22 = bytes Table

Common solution: Multi-level page table

EX\
S(:
Example: 2-level page table :

m Level 1 table (always memory-resident): each PTE points to a
page table
m Level 2 table (paged in and out like any other data): each PTE
points to a page
—32- Cs 105

HiC €83y
3

A Two-Level Page Table Hierarchy 32

Translating With a k-level Page Table

HiC €83y

Level-1 Level-2 Virtual
page table page tables ory
VPO Page table
/ base register
PTEO PTEO (PTBR)
VP 1023 2K allocated VM pages
- PTE1 P’TE"1.023 VP 1022 for code and data n-1 VIRTUAL ADDRESS p-1 0
AT [[VPN1_]; VPN2 - | VPNk | VPO
PTE 3 (null)
PTE 4 (null) Level-1 Level-2 Level-k
OO PTEO page table| page table page table
nul e eee

PTE 6 (null) PTE 1023
PTE7 (null) Gap 6K unallocated VM pages

PTES

1023 null

(1K-9) PTEs . 0

null PTEs PTE 1023 | 1023 | l PPN l PPO ‘
< unallocated 1023 unallocated pages
pages PHYSICAL ADDRESS
. VP 9215 1 allocated VM page —T/
32-bit addresses, 4KB pages, 4-byte PTEs for the stack
-33- : Cs 105 -34- Cs 105
HNC 8y
S 1

Programmer’s view of virtual memory
m Each process has its own private linear address space
m Cannot be corrupted by other processes

System view of virtual memory

m Uses memory efficiently by caching virtual memory pages
e Efficient only because of locality

= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point to check
permissions

_35- cs 105

