
– 1 – CS 105

Computer Systems
Introduction

Computer Systems
Introduction

Topics:

✁ Class Introduction

✁ Data Representation

CS 105
“Tour of the Black Holes of Computing!”

Geoff Kuenning
Spring 2022

– 2 – CS 105

Living on ZoomLiving on Zoom

Not again! Let’s hope it’s brief…

I try to keep the sessions as free as possible

✁ No waiting rooms so you can join early and talk to each other

PowerPoint and PDF versions of slides will be pre-posted

✁ Use them to take notes if you wish

✁ See calendar page on class site: https://www.cs.hmc.edu/~geoff/cs105

✁ Remind me at beginning of class if I forget (sometimes I do)

Please be visible and interactive!

✁ Sign in with your actual name

✁ Zoom discourages questions and chatting
� Please fight that tendency
� Avoid all those tempting distractions

✁ Seeing you helps me teach better
� I know some of you have bandwidth problems, but…

– 3 – CS 105

Course ThemeCourse Theme

✁ Abstraction is good, but don’t forget reality!

Many CS Courses emphasize abstraction

✁ Abstract data types

✁ Asymptotic analysis

These abstractions have limits

✁ Especially in the presence of bugs

✁ Need to understand underlying implementations

Useful outcomes

✁ Become more effective programmers
� Able to find and eliminate bugs efficiently

� Able to tune program performance

✁ Prepare for later “systems” classes in CS
� Compilers, Operating Systems, File Systems, Computer Architecture, Robotics, etc.

– 4 – CS 105

TextbooksTextbooks

Randal E. Bryant and David R. O’Hallaron,

✁ “Computer Systems: A Programmer’s Perspective”, 3rd Edition, Prentice Hall, 2015.

✁ Note: The “International Edition” is different. Watch out!

Brian Kernighan and Dennis Ritchie,

✁ “The C Programming Language, Second Edition”, Prentice Hall, 1988

Larry Miller and Alex Quilici

✁ The Joy of C, Wiley, 1997

– 5 – CS 105

SyllabusSyllabus

✁ Syllabus on Web: https://www.cs.hmc.edu/~geoff/cs105

✁ Calendar defines due dates
� Also has links to slides and labs

✁ Labs: cs105submit for some, others have specific directions

– 6 – CS 105

Notes:Notes:

Work groups

✁ You must work in pairs on all labs

✁ Honor-code violation to work without your partner!

✁ Corollary: showing up late doesn’t harm only you

Handins

✁ Check calendar for due dates

✁ Electronic submissions only

Grading Characteristics

✁ Lab scores tend to be high
� Serious handicap if you don’t hand a lab in

✁ Tests & quizzes typically have a wider range of scores
� I.e., they’re have major effect on your grade

» …but not the ONLY one

✁ Do your share of lab work and reading, or bomb tests

✁ Do practice problems in book

– 7 – CS 105

FacilitiesFacilities

Assignments will use Intel computer systems

� Not all machines are created alike
� Performance varies (and matters sometimes in 105)

� Security settings vary and can matter

�Wilkes: x86/Linux specifically set up for this class

� Log in on a lab Mac, then ssh to Wilkes
� If you want fancy programs, start X11 first

� Directories are cross-mounted, so you can edit on Knuth or your Mac, and

Wilkes will see your files

�…or ssh into Wilkes from wherever you are

� All programs must run on Wilkes: we grade there

� Have lecture slides (and textbook) available when working on labs!

CS 105
“Tour of the Black Holes of Computing”

Topics

✁ Representing information as bits

✁ Bit-level manipulations

✁ Integers
� Representation, unsigned and signed

� Conversion, Casting

� Expanding, truncating

� Addition, negation, multiplication, shifting

✁ Representations in memory, pointers, strings

CS 105

Bits, Bytes, IntegersBits, Bytes, Integers

– 9 – CS 105

Everything is bitsEverything is bits

Each bit is 0 or 1

By encoding/interpreting sets of bits in various ways

✁ Computers determine what to do (instructions)

✁ … and represent and manipulate numbers, sets, strings, etc…

Why bits? Electronic implementation

✁ Easy to store with bistable elements

✁ Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

– 10 – CS 105

Encoding Byte ValuesEncoding Byte Values

Byte = 8 bits

✁ Binary 000000002 to 111111112

✁ Decimal: 010 to 25510

✁ Hexadecimal 0016 to FF16

� Base 16 number representation

� Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

� Write FA1D37B16 in C as

» 0xFA1D37B

» 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

– 11 – CS 105

Example Data SizesExample Data Sizes

����������	 ���
����
���
� ���
��������
� ������

char � � �

short � � �

int � � �

long � � �

float � � �

double � � �

long double � � �����

��
��	� � � �

– 12 – CS 105

Boolean AlgebraBoolean Algebra

Developed by George Boole in 19th century

✁ Algebraic representation of logic
� Encode “True” as 1 and “False” as 0

���

✁ ����������	
���
�������
�����
��

✁ ����������	
�	�
�	������������

���

✁ ���������	
����
	
��
�������������

✁ ����������	
�	�
�	����������������
�
�
���
�

A B A&B
0 0 0
0 1 0
1 0 0
1 1 1

A B A|B
0 0 0
0 1 1
1 0 1
1 1 1

A B A^B
0 0 0
0 1 1
1 0 1
1 1 0

A ~A
0 1
1 0

– 13 – CS 105

Fancier Boolean AlgebraFancier Boolean Algebra

✁ ���
��������� ✁ ��������
����������

A B A&~B
0 0 0
0 1 0
1 0 1
1 1 0

A B ~A ~B (~A&~B) ~(~A&~B) A|B
0 0 1 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 1

– 14 – CS 105

Grouped Boolean OperationsGrouped Boolean Operations

Operate on bit vectors

✁ Operations applied bitwise

All of the properties of Boolean algebra apply

01101001
& 01010101

01000001

01101001
| 01010101

01111101

01101001
^ 01010101

00111100
~ 01010101

1010101001000001 01111101 00111100 10101010

– 15 – CS 105

Bit-Level Operations in CBit-Level Operations in C

Operations �, �, �, � available in C

✁ Apply to any “integral” data type
� ������������������������
�������

✁ View arguments as bit vectors

✁ Operations applied bit-wise

Examples (char data type)

✁ ��
���→→→→ �
�	

� ��������� � →→→→ �������� �

✁ ��
���→→→→ �

� ��������� � →→→→ �������� �

✁ �
!"�#��
$$�→→→→ �
��

� �������� � #��������� � →→→→ �������� �

✁ �
!"�%��
$$�→→→→ �
&'

� �������� � %��������� � →→→→ �������� �

– 16 – CS 105

Example: Representing & Manipulating SetsExample: Representing & Manipulating Sets

Representation

✁ Width w bit vector represents subsets of {0, …, w–1}

✁ aj = 1 if j � A

� 01101001 { 0, 3, 5, 6 }

� 76543210

� 01010101 { 0, 2, 4, 6 }

� 76543210

Operations

✁ & Intersection 01000001 { 0, 6 }

✁ | Union 01111101 { 0, 2, 3, 4, 5, 6 }

✁ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

✁ ~ Complement 10101010 { 1, 3, 5, 7 }

– 17 – CS 105

Contrast: Logic Operations in CContrast: Logic Operations in C

Contrast to Logical Operators

✁ ���������

� View 0 as “False”

� Anything nonzero seen as “True”

� Always return 0 or 1

� Early termination

Examples (char data type)

✁ (�
���→→→→ �
��

✁ (�
���→→→→ �
��

✁ ((�
���→→→→ �
��

✁ �
!"�##��
$$�→→→→ �
��

✁ �
!"�%%��
$$�→→→→ �
��

✁)�(*���##�+)� (unreadably avoids null pointer access)

– 19 – CS 105

Shift OperationsShift Operations

Left Shift: x << y

✁ Shift bit-vector x left y positions

» Throw away extra bits on left

� Fill with �’s on right

Right Shift: x >> y

✁ Shift bit-vector x right y positions

� Throw away extra bits on right

✁ Logical shift
� Fill with �’s on left

✁ Arithmetic shift

� Replicate most significant bit on left

Undefined Behavior

✁ Shift amount < 0 or � word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

– 20 – CS 105

C PuzzlesC Puzzles

✁ Taken from old exams

✁ Assume machine with 32-bit word size, two’s complement
integers

✁ For each of the following C expressions, either:
� Argue that it is true for all argument values, or

� Give example where it is not true

• x < 0 � ((x*2) < 0)

• ux >= 0

• x & 7 == 7 � (x<<30) < 0

• ux > -1

• x > y � -x < -y

• x * x >= 0

• x > 0 && y > 0 � x + y > 0

• x >= 0 � -x <= 0

• x <= 0 � -x >= 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

– 21 – CS 105

Encoding IntegersEncoding Integers

✁ C short (2 bytes long)

Sign Bit

✁ For 2’s complement, most-significant bit indicates sign
� 0 for nonnegative

� 1 for negative

short int x = 15213;
short int y = -15213;

B2T (X) = −xw−1 ⋅2w−1 + xi ⋅2 i

i=0

w−2

�B2U(X) = xi ⋅2 i

i=0

w−1

�

Unsigned Two’s Complement

Sign Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

– 22 – CS 105

Encoding Integers (Cont.)Encoding Integers (Cont.)
x = 15213: 00111011 01101101
y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213
– 23 – CS 105

Numeric RangesNumeric Ranges

Unsigned Values

✁ UMin = 0

000…0

✁ UMax = 2w – 1

111…1

Two’s-Complement Values

✁ TMin = –2w–1

100…0

✁ TMax = 2w–1 – 1

011…1

Other Values

✁ Minus 1

111…1

Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

– 24 – CS 105

Values for Different Word SizesValues for Different Word Sizes

W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

Observations

✁ |TMin | = TMax + 1

� Asymmetric range

✁ UMax = 2 * TMax + 1

C Programming

✁ #include <limits.h>
� K&R Appendix B11

✁ Declares constants, e.g.,

� ULONG_MAX

� LONG_MAX

� LONG_MIN

✁ Values platform-specific

– 25 – CS 105

A Critical DetailA Critical Detail

No self-identifying data

✁ Looking at a bunch of bits doesn’t tell you what they mean

✁ Could be signed, unsigned integer

✁ Could be floating-point number

✁ Could be part of a string

Only the program (instructions) knows for sure!

✁ (To be fair, experienced humans can make good guesses—see Lab 2)

– 26 – CS 105

Unsigned & Signed Numeric ValuesUnsigned & Signed Numeric Values

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

Equivalence

✁ Same encodings for
nonnegative values

Uniqueness

✁ Every bit pattern represents
unique integer value

✁ Each representable integer
has unique bit encoding

– 27 – CS 105

���

��� ���

,-�.��/�0)��0��� 1�������

����	���
���

��	
��		
��

x ux
X

Mapping Between Signed & UnsignedMapping Between Signed & Unsigned

Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

���

��� ���

,-�.��/�0)��0���1�������

����	���
���

��	
��		
��

ux x

X

– 28 – CS 105

Mapping Signed ↔↔↔↔ UnsignedMapping Signed ↔↔↔↔ Unsigned
������

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

��������

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

	�
�

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

12,

,21

– 29 – CS 105

Mapping Signed ↔↔↔↔ UnsignedMapping Signed ↔↔↔↔ Unsigned
������

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

��������

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

	�
�

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

�

34� �!

– 30 – CS 105

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation Between Signed & UnsignedRelation Between Signed & Unsigned

5��������������-�����
�������

5�����)��������-�����

���

��� ���

,-�.��/�0)��0��� 1�������

����	���
���

��	
��		
��

x ux
X

– 31 – CS 105

�

��	

����

��

��

�

�	

�	
 � �

��	

��	
�����

���
�����
�
�	

����

������
�

����

Conversion VisualizedConversion Visualized

2’s Comp. →→→→ Unsigned

✁ Ordering Inversion

✁ Negative →→→→ Big Positive

– 32 – CS 105

C Allows Conversions from Signed to Unsigned

Resulting Value

✁ No change in bit representation

✁ Nonnegative values unchanged
� ux = 15213

✁ Negative values change into (large) positive values!
� uy = 50323

short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;
unsigned short int uy = (unsigned short) y;

Casting Signed to UnsignedCasting Signed to Unsigned

– 33 – CS 105

Signed vs. Unsigned in CSigned vs. Unsigned in C

Integer Constants

✁ By default are considered to be signed integers
� Exception: unsigned, if too big to be signed but fit in unsigned

✁ Unsigned if have “U” as suffix
0U, 4294967259u

Casting

✁ Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;

unsigned ux, uy;

tx = (int)ux;

uy = (unsigned)ty;

✁ Implicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

lowercase is better here

– 34 – CS 105

Casting SurprisesCasting Surprises
Expression Evaluation

✁ If you mix unsigned and signed in single expression, signed values are implicitly
cast to unsigned

✁ Including comparison operations <, >, ==, <=, >=

✁ Examples for W = 32

Constant1 Constant2 Relation Evaluation

0 0u

-1 0

-1 0u

2147483647 -2147483648

2147483647u -2147483648

-1 -2

(unsigned)-1 -2

2147483647 2147483648u

2147483647 (int)2147483648u – 36 – CS 105

Summary: Casting Signed ↔ Unsigned:
Basic Rules
Summary: Casting Signed ↔ Unsigned:
Basic Rules
Bit pattern is maintained—but reinterpreted

Can have unexpected effects: adding or subtracting 2w

In expression containing signed and unsigned int:

✁ int is cast to unsigned!!

– 37 – CS 105

Sign ExtensionSign Extension

Task:

✁ Given w-bit signed integer x

✁ Convert it to w+k-bit integer with same value

Rule:

✁ Make k copies of sign bit:

✁ X ′′′′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ′ • • • • • •

• • •

w

wk – 38 – CS 105

Sign Extension ExampleSign Extension Example

✁ Converting from smaller to larger integer data type

✁ C automatically performs sign extension

short int x = 15213;
int ix = (int)x;
short int y = -15213;
int iy = (int)y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

– 39 – CS 105

Negating with Complement & IncrementNegating with Complement & Increment

Claim: Following holds for 2’s complement

~x + 1 == -x

Complement

✁ Observation: ~x + x == 1111…112 == -1

Increment

✁ ~x + x + (-x + 1) == -1 + (-x + 1)

✁ ~x + 1 == -x

Warning: Be cautious treating int’s as integers

✁ OK here (associativity and commutativity hold)

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

– 40 – CS 105

Unsigned AdditionUnsigned Addition

Standard Addition Function

✁ Ignores carry output

Implements Modular Arithmetic

s = UAddw(u , v) = u + v mod 2w

UAddw(u,v) =
u + v u + v < 2

w

u + v − 2
w

u + v ≥ 2
w

�
�
�

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAdd
w
(u , v)

– 41 – CS 105

Two’s-Complement AdditionTwo’s-Complement Addition

TAdd and UAdd have identical bit-level behavior

✁ Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned)u + (unsigned)v);

t = u + v

✁ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAdd
w
(u , v)

– 42 – CS 105

Detecting 2’s-Complement OverflowDetecting 2’s-Complement Overflow

Task

✁ Given s = TAddw(u , v)

✁ Determine if s = Addw(u , v)

✁ Example

int s, u, v;

s = u + v;

Claim

✁ Overflow iff either:
u, v < 0, s ≥≥≥≥ 0 (NegOver)

u, v ≥≥≥≥ 0, s < 0 (PosOver)

0

2w –1

2w–1
PosOver

NegOver

– 43 – CS 105

A Fun FactA Fun Fact

Official C standard says overflow is “undefined”

✁ Intention was to let machine define what happens

Recently ISO C committee and compiler writers have decided “undefined”
means “compiler gets to choose”

✁ Can generate 0, biggest integer, or anything else

✁ Or if compiler is sure it’ll overflow, it can optimize out completely

✁ Generates faster—but wrong!—code

✁ This can introduce some lovely bugs (e.g., it’s tricky to check for overflow)

Fight between compiler community and OS/security community over this
issue

– 44 – CS 105

MultiplicationMultiplication

Computing exact product of w-bit numbers x, y

✁ Either signed or unsigned

Ranges

✁ Unsigned: 0 � x * y � (2w – 1) 2 = 22w – 2w+1 + 1

� Up to 2w bits

✁ Two’s complement min: x * y � (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

� Up to 2w–1 bits (including 1 for sign)

✁ Two’s complement max: x * y � (–2w–1) 2 = 22w–2

� Up to 2w bits, but only for (TMinw)2

Maintaining exact results

✁ Would need to keep expanding word size with each product computed

✁ Done in software by “arbitrary-precision” arithmetic packages

– 45 – CS 105

Power-of-2 Multiply by ShiftingPower-of-2 Multiply by Shifting

Operation

✁ u << k gives u * 2k

✁ Both signed and unsigned

Examples

✁ u << 3 == u * 8

✁ u << 5 - u << 3 == u * 24

✁ Most machines shift and add much faster than multiply
� Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMult
w
(u , 2k)

•••

k

• • • 0 0 0•••

TMult
w
(u , 2k)

0 0 0••••••

– 46 – CS 105

Unsigned Power-of-2 Divide by ShiftingUnsigned Power-of-2 Divide by Shifting

Quotient of unsigned by power of 2

✁ u >> k gives � u / 2k �

✁ Uses logical shift

Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k

••• •••

•••0 ••• •••

� u / 2k � •••Result:

.

Binary Point

0 •••

– 47 – CS 105

Arithmetic: Basic RulesArithmetic: Basic Rules

Addition:

✁ Unsigned/signed: Normal addition followed by truncate;
same operation on bit level

✁ Unsigned: addition mod 2w

� Mathematical addition + possible subtraction of 2w

✁ Signed: modified addition mod 2w (result in proper range)
� Mathematical addition + possible addition or subtraction of 2w

Multiplication:

✁ Unsigned/signed: Normal multiplication followed by truncate; same operation on bit
level

✁ Unsigned: multiplication mod 2w

✁ Signed: modified multiplication mod 2w (result in range -2w-1 to 2w-1-1)

– 48 – CS 105

Why Should I Use Unsigned?Why Should I Use Unsigned?

Don’t use without understanding implications

✁ Easy to make mistakes
unsigned i;

for (i = cnt - 2; i >= 0; i--)

a[i] += a[i + 1];

✁ Can be very subtle
#define DELTA sizeof(int)

int i;

for (i = CNT; i - DELTA >= 0; i -= DELTA)

. . .

– 49 – CS 105

Counting Down with UnsignedCounting Down with Unsigned

Proper way to use unsigned as loop index
unsigned i;
for (i = cnt - 2; i < cnt; i--)
a[i] += a[i + 1];

See Robert Seacord, Secure Coding in C and C++

✁ C Standard guarantees unsigned addition will behave like modular arithmetic

� 0 – 1 � UMax

Even better
#include <sys/types.h>
size_t i;
for (i = cnt - 2; i < cnt; i--)
a[i] += a[i + 1];

✁ Data type size_t is unsigned value with length = word size

✁ Code will work even if cnt = UMax

✁ But what if cnt is signed and < 0?
– 50 – CS 105

Why Should I Use Unsigned? (cont.)Why Should I Use Unsigned? (cont.)

Do Use When Performing Modular Arithmetic

✁ Multiprecision arithmetic

Do Use When Using Bits to Represent Sets

✁ Logical right shift, no sign extension

Do Use for Very Large Arrays

✁ Signed index doesn’t have range

Do Use for Bit Fields

✁ Need Logical Right Shift

– 51 – CS 105

Byte-Oriented Memory OrganizationByte-Oriented Memory Organization

Programs refer to data by address

✁ Conceptually, envision it as a very large array of bytes
� In reality it’s not, but can think of it that way

✁ An address is like an index into that array

� …and, a pointer variable stores an address

Note: system provides private address space to each “process”

✁ Think of a process as a program being executed

✁ So, a program can clobber its own data, but not that of others

• • •

– 52 – CS 105

Machine WordsMachine Words

Any given computer has a “word size”

✁ Nominal size of integer-valued data
� …and of addresses

✁ Until about 2010, most machines used 32 bits (4 bytes) as word size
� Limits addresses to 4GB (232 bytes)

✁ Now most “real” machines (even phones) have 64-bit word size
� Potentially, could have 18 PB (petabytes) of addressable memory

� That’s 18.4 X 1015

✁ Machines still support multiple data formats
� Fractions or multiples of word size

� Always integral number of bytes

– 53 – CS 105

Word-Oriented Memory OrganizationWord-Oriented Memory Organization

Addresses specify byte
locations

✁ Address of first byte in word

✁ Addresses of successive
words differ by 4 (32-bit) or 8
(64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit
Words

Bytes Addr.

0012

0013

0014

0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

– 54 – CS 105

Byte OrderingByte Ordering

So, how are the bytes within a multi-byte word ordered in memory?

Conventions

✁ Big Endian: Sun, PPC Mac, Internet
� Most significant byte has lowest address

✁ Little Endian: x86, ARM processors running Android, iOS, and Windows

� Least significant byte has lowest address

– 55 – CS 105

Byte Ordering ExampleByte Ordering Example

Example

✁ Variable x has 4-byte value of 0x01234567

✁ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

This is
what we

use in 105

And it will
drive you

nuts!

– 56 – CS 105

char s[6] = "15213";

Representing StringsRepresenting Strings

Strings in C

✁ Represented by array of characters

✁ Each character encoded in ASCII format
� Standard 7-bit encoding of character set

� Character “0” has code 0x30

» Digit � has code 0x30+�

✁ String should be null-terminated
� Final character = '\0'

Compatibility

✁ Byte ordering not an issue (yay!)

IA32 Sun

31

35

32

31

33

00

31

35

32

31

33

00

0x100

