CS 105
"Tour of the Black Holes of Computing!"

Computer Systems

 IntroductionGeoff Kuenning
Spring 2022

Topics:

- Class Introduction
- Data Representation

Course Theme

- Abstraction is good, but don't forget reality!

Many CS Courses emphasize abstraction

- Abstract data types
- Asymptotic analysis

These abstractions have limits

- Especially in the presence of bugs
- Need to understand underlying implementations

Useful outcomes

Become more effective programmers

- Able to find and eliminate bugs efficiently
- Able to tune program performance
- Prepare for later "systems" classes in CS
- Compilers, Operating Systems, File Systems, Computer Architecture, Robotics, etc.

Syllabus

- Syllabus on Web: https://www.cs.hmc.edu/~geoff/cs105
- Calendar defines due dates
- Also has links to slides and labs
- Labs: cs105submit for some, others have specific directions

Facilities

Assignments will use Intel computer systems

- Not all machines are created alike
- Performance varies (and matters sometimes in 105)
- Security settings vary and can matter

■ Wilkes: x86/Linux specifically set up for this class

- Log in on a lab Mac, then ssh to Wilkes
- If you want fancy programs, start X11 first
- Directories are cross-mounted, so you can edit on Knuth or your Mac, and Wilkes will see your files
■ ...or ssh into Wilkes from wherever you are
- All programs must run on Wilkes: we grade there
- Have lecture slides (and textbook) available when working on labs!

Notes:

Work groups

- You must work in pairs on all labs

Honor-code violation to work without your partner!

- Corollary: showing up late doesn't harm only you

Handins

- Check calendar for due dates

Electronic submissions only
Grading Characteristics

- Lab scores tend to be high
- Serious handicap if you don't hand a lab in
- Tests \& quizzes typically have a wider range of scores - I.e., they're have major effect on your grade
" ...but not the ONLY one
- Do your share of lab work and reading, or bomb tests
- Do practice problems in book

CS 105
"Tour of the Black Holes of Computing"
Bits, Bytes, Integers

Topics

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation, unsigned and signed

Conversion, Casting

- Expanding, truncating
- Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings

Everything is bits

Each bit is 0 or 1
By encoding/interpreting sets of bits in various ways

- Computers determine what to do (instructions)
- ... and represent and manipulate numbers, sets, strings, etc...

Why bits? Electronic implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	$10 / 16$
pointer	4	8	8

Encoding Byte Values

Byte $=8$ bits

- Binary 00000000_{2} to 11111111_{2}
- Decimal: 0_{10} to $\mathbf{2 5 5}_{10}$
- Hexadecimal 00_{16} to FF_{16}
- Base 16 number representation
- Use characters ' 0 ' to ' 9 ' and ' A ' to ' F '
- Write FA1D37B ${ }_{16}$ in C as
" 0xFA1D37B
" 0xfa1d37b

-10 -

Boolean Algebra

Developed by George Boole in 19th century

- Algebraic representation of logic
- Encode "True" as 1 and "False" as 0
- $A \& B=1 \begin{aligned} & \text { And } \\ & \text { when both } A=1 \text { and } B=1\end{aligned}$

$A B$	$A \&$
00	0
0	1

0	0	0
0	1	0

01	0			
10	0		10	0
:---	:---	:---		
11	1	Not $A=\begin{gathered}\text { Not } \\ 1 \text { when } A=0\end{gathered}$	A	$\sim \mathrm{A}$
:---:	---:			
0	1			
1	0			

- 12 -
- $A \mid B=1$ when er $\begin{aligned} & \text { er } \\ & A=1\end{aligned}$ or $B=1$

$A B$	$A \mid B$
00	0

$A B$	$A \mid B$
0	0
0	0
0	1

0	0	0
0	1	1
1	0	1

10	
11	

Exclusive-Or (Xor)

- $A^{\wedge} B=1$ when either $A=1$ or $B=1$, but not both

$\mathrm{A} B$
\mathbf{B}
$\mathbf{A}^{\wedge} \mathrm{B}$
0

0	0
0	1
1	0
1	1
1	1
	0

CS 105

Fancier Boolean Algebra
What is $\mathrm{A} \& \sim \mathrm{~B}$?

A	B
$A \& \sim B$	
0	0
0	0
1	0
1	0
1	1
1	0

- How about ~ (~A\&~B)?

Bit-Level Operations in C

Operations \&, I, \sim, \wedge available in C
Apply to any "integral" data type

- long, int, short, char, unsigned
- View arguments as bit vectors
- Operations applied bit-wise

Examples (char data type)

- $=\times \times 4 \bar{y} \rightarrow 0 \times B E \quad B \quad$
$-\underbrace{\sim 10111110_{2}}_{0100001_{2}}$

$\xrightarrow{\sim}{ }^{\sim}{ }^{\sim} 0000000000_{2} \rightarrow 11111111$
- 0×69 \& $0 \times 55 \rightarrow 0 \times 41$
-01101001_{2} \& $01010101_{2} \rightarrow 01000001_{2}$
0x69 | $0 \times 55 \rightarrow 0 \times 7 \mathrm{D}$
- 01101001 ${ }_{2}$ | 01010101 ${ }_{2} \rightarrow 01111101_{2}$
- 15 -

Grouped Boolean Operations

Operate on bit vectors

- Operations applied bitwise

$$
\begin{aligned}
& 01101001 \\
& \& \mathrm{O}_{1} \mathrm{~B} \\
& 01000001 \\
& 01101001 \\
& \text { | } 01010101 \\
& \begin{array}{r}
01101001 \\
01010101
\end{array} \\
& 01010101 \\
& \frac{\sim 01010101}{10101010}
\end{aligned}
$$

All of the properties of Boolean algebra apply

Example: Representing \& Manipulating Sets

Representation

- Width w bit vector represents subsets of $\{0, \ldots, \mathrm{w}-1\}$
- $a_{i}=1$ if $j \in A$
- $01101001-\{0,3,5,6\}$
- 01101001
- 01010101
- $01010101\{0,2,4,6\}$
- 76543210

Operations

- \& Intersection 01000001 \{0,6\}
- Union $01111101 \quad\{0,2,3,4,5,6$
^ Symmetric difference $00111100 \quad\{2,3,4,5$
~ Complement 10101010 \{1,3,5,7

Contrast: Logic Operations in C

Contrast to Logical Operators

- \&\&, II, !
- View 0 as "False"
- Anything nonzero seen as "True"
- Always return 0 or 1
- Early termination

Examples (char data type)

- ! $0 \times 41 \rightarrow 0 \times 00$
- $0 \times 00 \rightarrow 0 \times 01$
- !! $0 \times 41 \rightarrow 0 \times 0$
- 0×69 \& \& 0x55 $\rightarrow 0 \times 01$
- $0 \times 69 \| 0 \times 55 \rightarrow 0 \times 01$
- p!= $0 \& \&$ * (unreadably avoids null pointer access)

C Puzzles

- Taken from old exams
- Assume machine with 32-bit word size, two's complement integers
- For each of the following C expressions, either
- Argue that it is true for all argument values, or
- Give example where it is not true

$$
\text { - } x<0 \quad \Rightarrow((x * 2)<0)
$$

Initializatio

- $x \& 7=7$
$\Rightarrow(x \ll 30)<0$
int $y=$ lo () ux > -1 unsigned $\longrightarrow \underset{ }{\longrightarrow}=x$;

$$
\cdot x>y
$$

$$
\Rightarrow-x<-y
$$

unsigned uy = y;

- x * $x>=0$
- $x>=0$
$\Rightarrow-\mathrm{x}<=0$
- $x<=0 \quad \Rightarrow-x>=0$

Shift Operations

Left Shift: \quad x $<$ y

- Shift bit-vector \mathbf{x} left y positions
", Throw away extra bits on left
- Fill with 0's on right

Right Shift: x >> y

- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with o's on left

Arithmetic shift

- Replicate most significant bit on left

Argument \times	011 100010
$\ll 3$	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

Argument \mathbf{x}	10100010
$\ll 3$	00010000
Log. >> 2	00101000
Arith. >> 2	11 IIb 1000

Undefined Behavior

- Shift amount < 0 or \geq word size
-19-

Encoding Integers

Two's Complement

$$
\begin{aligned}
& \text { short int } \mathrm{x}=15213 ; \\
& \text { short int } \mathrm{y}=-15213 \text {; }
\end{aligned}
$$

Sign Bit

- C short (2 bytes long)

	Dec	Hex	Bin	
\times	15213		00111011	0110190
y	-1521	C4 93	(1)1000100	1001001

Sign Bit
$\uparrow \bar{r}=F$

- For 2's complement, most-significant bit indicates sign - 0 for nonnegative
- 1 for negative

Encoding Integers (Cont.)

Values for Different Word Sizes

	W					
	8	16	$\mathbf{3 2}$			64
UMax	255	65,535	$\mathbf{4 , 2 9 4 , 9 6 7 , 2 9 5}$	$\mathbf{1 8 , 4 4 6 , 7 4 4 , 0 7 3 , 7 0 9 , 5 5 1 , 6 1 5}$		
TMax	127	32,767	$\mathbf{2 , 1 4 7 , 4 8 3 , 6 4 7}$	$9,223,372,036,854,775,807$		
TMin	-128	$-32,768$	$-2,147,483,648$	$-9,223,372,036,854,775,808$		

Observations

- \mid TMin $\mid=$ TMax +1
- Asymmetric range
- UMax $=2^{*}$ TMax +1

C Programming

- \#include <limits.h> - K\&R Appendix B11
- Declares constants, e.g., - ulong_max
- Long_max
- LONG_MIN
- Values platform-specific

Numeric Ranges

Unsigned Values

- UMin = 0

000 o

- UMax $=(2 \nmid \psi-1$
111...

Two's-Complement Values

- TMin $=-2^{w-1}$

TMax $=\left(2^{(w-1)}\right)-1$
011... 1

A Critical Detail

No self-identifying data

- Looking at a bunch of bits doesn't tell you what they mean

Could be signed, unsigned integer

- Could be floating-point number
- Could be part of a string

Only the program (instructions) knows for sure!

- (To be fair, experienced humans can make good guesses-see Lab 2)

Unsigned \& Signed Numeric Values

\boldsymbol{X}	B2U (\boldsymbol{X})	$\mathbf{B 2 T}(\boldsymbol{X})$
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

- Same encodings for nonnegative values
pattern represents unique integer value
- Each representable integer has unique bit encoding

Mapping Signed \leftrightarrow Unsigned

Bits	Signed	Unsigned
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	-8	8
1001	-7	9
1010	-6	10
1011	-5	11
1100	-4	12
1101	-3	13
1110	-2	14
1111	-1	15

Mapping Between Signed \& Unsigned
Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Two's Complement
-1
 Unsigned

Mapping Signed \leftrightarrow Unsigned

Relation Between Signed \& Unsigned

Two's Complement

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

$$
\begin{aligned}
& \begin{array}{l}
\text { short int } \quad x=15213 ; \\
\text { unsigned short int ux }
\end{array} \\
& \text { unsigned short int } u x=\text { (unsigned short) } x \\
& \text { short int } y=-15213 \text {; } \\
& \text { unsigned short int uy }=\text { (unsigned short) } y \text {; }
\end{aligned}
$$

Resulting Value

- No change in bit representation
- Nonnegative values unchanged - $u x=15213$
- Negative values change into (large) positive values - uy $=50323$

Conversion Visualized

2's Comp. \rightarrow Unsigned
Ordering Inversion

- Negative \rightarrow Big Positive

Range

31 -

Signed vs. Unsigned in C
Integer Constants

- By default are considered to be signed integers
- Exception: unsigned, if too big to be signed but fit in unsigned
- Unsigned if have "U" as suffix

Casting

- Explicit casting between signed \& unsigned same as U2T and T2U int tx, ty;
unsigned ux, uy
tx $=$ (int) ux;
$\mathrm{tx}=$ (int) $\mathrm{ux} ;$
$\mathrm{uy}=$ (unsigned) t_{y}
- Implicit casting also occurs via assignments and procedure calls $t x y=$ tix
uy $=\mathrm{ty}$;
$\operatorname{fros}_{\sigma}(-3)$
-33-

Casting Surprises

Expression Evaluation

- If you mix unsigned and signed in single expression, signed values are implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for $W=32$

Constant
Constant ${ }_{2}$
Relation Evaluation
0
$-1 \quad 0$
-1 0u
2147483647 -2147483648
2147483647u -2147483648
-1 -2
(unsigned)-1 -2
21474836472147483648
2147483647 (int)2147483648u

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to $w+k$-bit integer with same value

Rule:

- Make \boldsymbol{k} copies of sign bit
- $X^{\prime}=x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{0}$
-37-

Summary: Casting Signed \leftrightarrow Unsigned:

 Basic Rules

Bit pattern is maintained-but reinterpreted
Can have unexpected effects: adding or subtracting $\mathbf{2}^{\text {w }}$

In expression containing signed and unsigned int:
int is cast to unsigned!!
-36-

Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Negating with Complement \& Increment

Claim: Following holds for 2's complement

$$
\sim x+1==-x
$$

Complement

- Observation: $\sim \mathrm{x}+\mathrm{x}==1111 . . .11_{2}=-1$

$$
\begin{aligned}
& \times \text { 1.0|O| } 1 \text { | } 11|0| 1 \\
& +\sim \mathbf{x} 0111000010 \\
& \left.-1\left|\begin{array}{ll}
1|1| & 1 \mid \\
\hline
\end{array}\right| 1|1| 1 \right\rvert\, 1
\end{aligned}
$$

Increment
$-\sim x+\not x+(-x x+1) \quad==-\not x+(-x+\not x)$
Varning: Be cautious treating int's as integers
$-39-$ OK here (associativity and commutativity hold)

Two's-Complement Addition

TAdd and UAdd have identical bit-level behavior

- Signed vs. unsigned addition in C:
int $s, t, u, v ;$
$\mathrm{s}=$ (int) ((unsigned) $\mathrm{u}+($ unsigned) v$)$;
$\mathrm{t}=\mathrm{u}+\mathrm{v}$
- Will give $s=t$

Unsigned Addition

Standard Addition Function

- Ignores carry output

Implements Modular Arithmetic
$s=\operatorname{UAdd}_{w}(u, v)=u+v \bmod ^{w}$

```
VAdd}\mp@subsup{w}{w}{}(u,v)={\begin{array}{cc}{u+v}&{u+v<2}\\{u+v-\mp@subsup{2}{}{w}}&{u+v\geq\mp@subsup{2}{}{w}}
```

40

Detecting 2's-Complement Overflow

Task

- Given $s=\operatorname{TAdd}_{w}(u, v)$

Determine if $s=\operatorname{Add}_{w}(u, v)$

- Example
int s, u, v;
$\mathrm{s}=\mathrm{u}+\mathrm{v}$;
Claim
- Overflow iff either:
$u, v<0, s \geq 0$ (NegOver)
$u, v \geq 0, s<0$ (PosOver)

A Fun Fact

Official C standard says overflow is "undefined"

- Intention was to let machine define what happens

Recently ISO C committee and compiler writers have decided "undefined" means "compiler gets to choose"

- Can generate 0 , biggest integer, or anything else
- Or if compiler is sure it'll overflow, it can optimize out completely
- Generates faster-but wrong!-code
- This can introduce some lovely bugs (e.g., it's tricky to check for overflow)

Fight between compiler community and OS/security community over this issue

Power-of-2 Multiply by Shifting

Operation

- u << k gives u* 2^{k}
- Both signed and unsigned

- Most machines shift and add much faster than multiply \bullet Compiler generates this code automatically 3-4/clocks

Multiplication

Computing exact product of w-bit numbers x, y - Either signed or unsigned

Ranges

- Unsigned: $0 \leq x^{*} y \leq\left(2^{w}-1\right)^{2}=2^{2 w}-2^{w+1}+1$ - Up to $2 w$ bits
- Two's complement min: $x^{*} y \geq\left(-2^{w-1}\right)^{*}\left(2^{w-1}-1\right)=-2^{2 w-2}+2^{w-1}$
- Up to $2 w-1$ bits (including 1 for sign)
- Two's complement max: $x^{*} y \leq\left(-2^{w-1}\right)^{2}=2^{2 w-2}$
- Up to $2 w$ bits, but only for $\left(\text { TMin }_{w}\right)^{2}$

Maintaining exact results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary-precision" arithmetic packages

Unsigned Power-of-2 Divide by Shifting

Quotient of unsigned by power of 2

- u >> k gives $\left\lfloor\mathrm{u} / 2^{k}\right.$ 」
- Uses logical shift

-46-

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate;
same operation on bit level
- Unsigned: addition mod $\mathbf{2}^{\mathbf{w}}$
- Mathematical addition + possible subtraction of 2^{w}
- Signed: modified addition mod ${ }^{2 w}$ (result in proper range)
- Mathematical addition + possible addition or subtraction of 2^{w}

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate; same operation on bit level
- Unsigned: multiplication mod $\mathbf{2}^{w}$
- Signed: modified multiplication mod 2^{w} (result in range -2^{w-1} to $2^{w-1}-1$)

Counting Down with Unsigned

Proper way to use unsigned as loop index
unsigned i;
for ($i=\mathrm{cnt}-2 ; i<c n t ; i-$ $a[i]+=a[i+1]$
See Robert Seacord, Secure Coding in C and C++

- C Standard guarantees unsigned addition will behave like modular arithmetic - 0-1 \rightarrow UMax

Even better

\#include <sys/types.h>
size_t i;
for ($i=$ ont $-2 ; i<c n t ; i--)$ $a[i]+=a[i+1]$,

- Data type size_t is unsigned value with length = word size
- Code will work even if $\mathrm{cnt}=U M a x$
-49- But what if cnt is signed and < 0 ?

Why Should I Use Unsigned?

Don't use without understanding implications

- Easy to make mistakes
unsigned i
for ($i=c n t-2 ; i \quad>=0 ; i-$
$a[i]+=a[i+1]$;
- Can be very subtle
\#define DELTA sizeof(int
int i;
for ($i=C N T$; i - DELTA $>=0$; i-= DELTA
-48-

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic

Do Use When Using Bits to Represent Sets

- Logical right shift, no sign extension

Do Use for Very Large Arrays

- Signed index doesn't have range

Do Use for Bit Fields

- Need Logical Right Shift

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes - In reality it's not, but can think of it that way
- An address is like an index into that array
- ...and, a pointer variable stores an address

Note: system provides private address space to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Word-Oriented Memory Organization

Addresses specify byte

 locationsAddress of first byte in word

- Addresses of successiv words differ by 4 (32-bit) or 8 (64-bit)

Machine Words

Any given computer has a "word size"

- Nominal size of integer-valued data
- ...and of addresses
- Until about 2010, most machines used 32 bits (4 bytes) as word size - Limits addresses to 4GB (2 ${ }^{32}$ bytes)
- Now most "real" machines (even phones) have 64-bit word size - Potentially, could have 18 PB (petabytes) of addressable memory - Potentially, could
- Machines still support multiple data formats
- Fractions or multiples of word size
- Always integral number of bytes

Byte Ordering

So, how are the bytes within a multi-byte word ordered in memory? Conventions

- Big Endian: Sun, PPC Mac, Internet
- Most significant byte has lowest address
- Little Endian: x86, ARM processors running Android, iOS, and Windows - Least significant byte has lowest address

Byte Ordering Example
Example

- Variable x has 4-byte value of 0×01234567
- Address given by $\& x$ is 0×100

Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format - Standard 7-bit encoding of character set

Character " 0 " has code 0×30
Digit i has code $0 \times 30+i$
String should be null-terminated

- Final character $={ }^{\prime \prime} 0^{\prime}$

Compatibility

- Byte ordering not an issue (yay!)

