HNC CS))
»

HNC CS))
»

Living on Zoom r

CS 105 0
113 H 1
Tour of the Black Holes of Computing! . . .
P 9 Not again! Let’s hope it’s brief...
Computer Systems | try to keep the sessions as free as possible
Intr d tI n = No waiting rooms so you can join early and talk to each other
oductio PowerPoint and PDF versions of slides will be pre-posted
i m Use them to take notes if you wish
GeOff_ Kuenning u See calendar page on class site: https://www.cs.hmc.edu/~geoff/cs105
Spring 2022 = Remind me at beginning of class if | forget (sometimes | do)
Please be visible and interactive!
Topics: = Sign in with your actual name
m Class Introduction m Zoom discourages questions and chatting
= Data Representation o Please fight that tendency
e Avoid all those tempting distractions
m Seeing you helps me teach better
® | know some of you have bandwidth problems, but...
-1- CS 105 -2- CS 105
HACC5)) HACC5))
))
Course Theme 2 Textbooks =

m Abstraction is good, but don’t forget reality!

Many CS Courses emphasize abstraction
m Abstract data types
m Asymptotic analysis

These abstractions have limits
m Especially in the presence of bugs
= Need to understand underlying implementations

Useful outcomes
= Become more effective programmers
® Able to find and eliminate bugs efficiently
e Able to tune program performance

m Prepare for later “systems” classes in CS
e Compilers, Operating Systems, File Systems, Computer Architecture, Robotics, etc.

_3- €S 105

Randal E. Bryant and David R. O’Hallaron,
= “Computer Systems: A Programmer’s Perspective”, 3" Edition, Prentice Hall, 2015.
m Note: The “International Edition” is different. Watch out!

Brian Kernighan and Dennis Ritchie,
= “The C Programming Language, Second Edition”, Prentice Hall, 1988

Larry Miller and Alex Quilici
m The Joy of C, Wiley, 1997

—4- CS 105

HNC CS))
»

Syllabus 2

m Syllabus on Web: https://www.cs.hmc.edu/~geoff/cs105

m Calendar defines due dates
@ Also has links to slides and labs

= Labs: cs105submit for some, others have specific directions

-5- Cs 105

HMC CS!
)
Notes: "
O

Work groups

= You must work in pairs on all labs

= Honor-code violation to work without your partner!

m Corollary: showing up late doesn’t harm only you

Handins
m Check calendar for due dates
m Electronic submissions only

Grading Characteristics
m Lab scores tend to be high
e Serious handicap if you don’t hand a lab in
m Tests & quizzes typically have a wider range of scores
® l.e., they’re have major effect on your grade
» ...but not the ONLY one
= Do your share of lab work and reading, or bomb tests

_- m Do practice problems in book cs 105

HAC CS)y
Facilities "

o
Assignments will use Intel computer systems

= Not all machines are created alike
o Performance varies (and matters sometimes in 105)
® Security settings vary and can matter

m Wilkes: x86/Linux specifically set up for this class

m Log in on a lab Mac, then ssh to Wilkes
o If you want fancy programs, start X11 first
o Directories are cross-mounted, so you can edit on Knuth or your Mac, and
Wilkes will see your files

m ...or ssh into Wilkes from wherever you are
m All programs must run on Wilkes: we grade there
= Have lecture slides (and textbook) available when working on labs!

-7- CS 105

CS 105

“Tour of the Black Holes of Computing”
Bits, Bytes, Integers

Topics
= Representing information as bits
= Bit-level manipulations

m Integers
e Representation, unsigned and signed
e Conversion, Casting
e Expanding, truncating
e Addition, negation, multiplication, shifting

= Representations in memory, pointers, strings

CS 105

HNC CS))
»

Everything is bits "

Encoding Byte Values

HNC CS))
»

© ©
s . >
Each bit is 0 or 1 Byte = 8 bits . 6@0&
- . o . Binary 000000002 to 11111111 RPN
By encoding/interpreting sets of bits in various ways " bout y ot 2;5 : > [0 [0 [0000
m Decimal: (o)
= Computers determine what to do (instructions) . ° ° ; ; gggg
. . m Hexadecimal 0016 to FF1e
= ... and represent and manipulate numbers, sets, strings, etc... e Base 16 number representation 2 2 g%g
Why bits? Electronic implementation © Use characters ‘0" to 9" and "A’ to 'F’ ERERAET
= Easy to store with bistable elements ¢ Write FAID37B1s in C as 7 [7 [o01i1
R I'ybl A itted : i te wi » 0XFA1D37B 8 | 8 [1000
= Reliably transmitted on noisy and inaccurate wires 9 [9 [1001
v Y » Oxfald37b R MR
0 B [11 1011
C [12]1100
D [13[1101
E [14[1110
"’_’ﬁ F [15[1111
-9- 0.0v — CS 105 -10- CS 105
RAC_CS)) RAC_ CS))
= L =
Example Data Sizes ok Boolean Algebra z
© ©
Developed by George Boole in 19th century
i = Algebraic representation of logic
— 1 1 S~ e Encode “True” as 1 and “False” as 0
And or
EerEE 2 2 2 « A&B = 1 when both A=1 and B=1 # A|B = 1 when either A=1 or B=1
int 4 4 4 A B|A&B AB|AB
00| O 00| O
) 8 8 01| 0 01/ 1
float 4 4 4 10| 0 10(1
double 8 8 8 111 111
Not Exclusive-Or (Xor)
long double - - 10/16 u ~A =1 when A=0 u AMB = 1 when either A=1 or B=1, but not both
pointer @ 8 8 Al ~A AB|AB
o 1 00| O
1 0 01| 1
10(1
-11- CS 105 —-12- 11 0 CS 105

Fancier Boolean Algebra

HNC CS))
»

Grouped Boolean Operations

HNC CS))
»

Operate on bit vectors
m Operations applied bitwise
= What is A&~B? = How about ~(~A&"B)?
0&0100&/\ 01101001 01101001
AB| ~A ~B (~A&-~B) ~(~A&-B) | AIB & ogodoloy | oio10101 01010101 ~ 01010101
00| 1 1 1 > | O 01000001 01111101 00111100 10101010
01| 1 0 0 1 |
} (1’ g :) g } \ All of the properties of Boolean algebra apply
I
-13- CS 105 —-14- CS 105
HACC5)) HACC5))
- . .))
Bit-Level Operations in C " . . . : "
P o Example: Representing & Manipulating Sets ¢
Operations &, |, ~, ~available in C Representation
m Apply to any “integral” data type m Width w bit vector represents subsets of {0, ..., w—1}
® long, int, short, char, unsigned ma=1ifjeA
m View arguments as bit vectors ,
= Operations applied bit-wise e 01101001 {0,3,5,6}
e 76543210
Examples (char data type)
m&0xa? - 0xBE [|- e 01010101 {0,2,4,6}
© ~01000001, - 10111110, ® 76543210
u ~0x00 — OXFF .
© ~00000000; — 11111111, Operations
u Ox69 & OX55 — Ox41 = & Intersection 1000001) {0,6}
® 01101001, & 01010101, — 01000001, m | Union 01111101 {0,2,3,4,5,6}
m 0x69 | 0x55 — 0x7D m A Symmetric difference 00111100 {2,3,4,5}
© 01101001, | 01010101, — 01111101, = ~ Complement 10101010 {1,3,5,7}
-15— CS 105 -16—

CS 105

Contrast: Logic Operations in C

HMC. €Sy
3

Shift Operations

HNC CS))
n

O O
Contrast to Logical Operators Left Shift: x <<y Argument = (%3
m &8, |[],! m Shift bit-vector x left y positions p T 5 a00
e View 0 as “False” » Throw away extra bits on left b
e Anything nonzero seen as “True” o Fill with 0’s on right Log.>> 2 | 00011000
e Always return 0 or 1 . . -
: Arith. >> 2| 00011000
e Early termination nght Shift: x >> y i
m Shift bit-vector x right y positions
Examples (char data type) e Throw away extra bits on right Argument x| 10100010
m 10x41 - 0x00 = Logical shift
3 00010000
® 10x00 - 0x01 o Fill with 0's on left b
= HOxdl ~ 0x01 u Arithmetic shift Log.>> 2 | 00101000
m 0x69 &8& OX55 — 0x01 e Replicate most significant bit on left Arith. >> 2 | 218b1000
= 0x69 || 0x55 —~ 0x01 Undefined Behavior
= p!=08&& *p (unreadably avoids null pointer access) = Shift amount < 0 or 2 word size
-17- CS 105 -19- CS 105
HACC5)y HACC5)y
) . 2
C Puzzles Encoding Integers 2
©} . ©}
u Taken from old exams Unsigned Two’s Complement
= Assume machine with 32-bit word size, two’s complement - .
integers BUX) = Y x02 B2T(X) = +> x 02
m For each of the following C expressions, either: -
® Argue that it is true for all argument values, or short int x = 15213;
© Give example where it is not true short int y = -15213; Sign Bit
cx<0 = ((x*2) < 0) m C short (2 bytes long)
M ux >= 0 - -
Initialization Decimal Hex | _—— Bingary
« x &7 ==17 = (x<<30) < 0 X 15213] 3B 60|} 00111017 01101 0f]
int x = foo(); . ux > -1 T y -15213] c4 93] (71000100 10010011
int y = bar(); e x>y = -x < -y Slgn Bit /Lv’" F
unsigned(se'= x; c x*x>=0 » For 2’s complement, most-significant bit indicates sign
unsigned uy = y; x>088y>0 D x4+y>0 e 0 for nonnegative
o 1 for negative
¢« x >= 0 = -x <=0
-20- * x <=0 = -x >= 0 CS 105 -21- CS 105

Encoding Integers (Cont.)

BNC CS)y
5k

Numeric Ranges

HNC CS))
»

O O
x = 15213: 00111011 01101101
“ y = -15213: 11000100 10010011 “ Unsigned Values Two’s-Complement Values
- u UMin =0 n TMin = —2w-1
Weight 15213 -15213
S 5 3 > 3 000...0 100...0
2 0 0 1 2 = UMax = (2/-1 " TMax = <2/W-1
4 1 4 0 0 111...1 011...1
8 1 8 0 0
16| 0 0| 1 16| Other Values
32) 1 32 0 0 .
o 1 s 0 o e
128 0 0 1 128| _
256 1 256, 0 0 Values for W= 16
512 1 512 0 0 Decimal | Hex— Binary
1024 0 0] 1 1024 UMax 65535 CgF FEJ| 11111111 11111111
2048 1 2048 0 0 TMax 32767| 7F FF| 01111111 11111111
4096 1 4096 0 0 TMin -32768] 80 _0Q[10000000 00000000
8192 1 8192 0 0 -1 1| FF FF] 11111111 11111111
16384 0 0 1 16384 0 0] 00 00| 00000000 00000000
-32768 0 1 -32768|
oo Sum ~ 15213 -15213 cS 105 o3 cs 105
HACC5)) HACC5))
. . 5 agn . 2
Values for Different Word Sizes A Critical Detail 2
O O
5 = = w = No self-identifying data
UMax [255 65,535 4,294,967,295 18,446,744,073,709,551,615 m Looking at a bunch of bits doesn’t tell you what they mean
TMax | 127] 32,767 2,147,483,647 9,223,372,036,854,775,807 = Could be signed, unsigned integer
TMin | -128] -32,768 -2,147,483,648 -9,223,372,036,854,775,808 . i
= Could be floating-point number
m Could be part of a string
Observations C Programming Only the program (instructions) knows for sure!
® |[TMin| = TMax +1 ® #include <limits.h> m (To be fair, experienced humans can make good guesses—see Lab 2)
® Asymmetric range e K&R Appendix B11 » €Xp 9 9
m UMax = 2* TMax+1 = Declares constants, e.g.,
® ULONG_MAX
® LONG_MAX
® LONG_MIN
= Values platform-specific
—-24- CS 105 —-25— CS 105

BNC. CS)y BNC. CS)y
Unsigned & Signed Numeric Values 2 Mapping Between Signhed & Unsigned z
X__1B2U(X) | B2T(X)| Equivalence Mappings between unsigned and two’s complement numbers:
gggf ? ? = Same encodings for Keep bit representations and reinterpret
nonnegative values
0010 2 2
0011 3 3 Uniqueness Two's Complement L i
0100 4 4 u Every bit pattern represents T2u
gi;’é g 2 unique integer value -~ 7L * —[128}~[B2u}—1—— al
o111 7 7 m Each rgprese_ntable ir_Iteger
1000 8 _8 has unique bit encoding Maintain Same Bit Pattern
1001 9 -7
1010 10 -6 ’ Unsigned 2T Two’s Complement
1011 11 -5 D ! ux [U2B|—[B2T H+—— *
1100 12 —4 1 z{(ﬁ “ ot \<\ ﬁ X - ?
1101 13 -3
1110 14 -2 / Maintain Same Bit Pattern
1111 15 —1
-26-— CS 105 -27- CS 105
BNC. CS)y BNC. CS)y
. . .) . . .)
Mapping Signed - Unsigned Mapping Signed - Unsigned
_ _ © _ _ _ ©
Bits Signed Unsigned Bits Signed Unsigned
0000 0 0 0000))
0001 i, 1 0001 i, 1
0010 2 2 0010 2 2
0011 3 3 0011 3 - 3
0100 4 4 0100 4 +—> 4
0101 5 5 0101 5 5
0110 6 6 0110 6 6
0111 7 7 0111 7 7
1000 -8 8 1000 -8 8
1001 -7 9 1001 -7 9
1010 -6 10 1010 -6 10
+/- 16
1011 -5 11 1011 -5 11
1100 -4 12 1100 -4 12
1101 =5 13 1101 =5 13
1110 =2 14 1110 =2 14
—28- 1111 = L5 cs 105 —29- 1111 = LS cs 105

HNC CS))
»

BNC CS)y
e

Relation Between Signed & Unsigned " Conversion Visualized
©} ©}
2’s Comp. - Unsigned
Two’s Compl ! ! = Ordering Inversion UMax
T20 UMax—1
x _.T.__. ux = Negative - Big Positive
Maintain Same Bit Pattern _ TMax +1 Unsigned
TMax TMax Range
w=l 0
(/78 Y I 1 Y |
M=o T+]+04]
2’s Complement 0 0
Range 1 N
Large negative weight -2
becomes
Large positive weight
TMin
-30- CS 105 -31- L CS 105
HACC5)y HACC5)y
- - - 3 - - -)
Casting Signed to Unsigned {7 Signed vs. Unsigned in C
©} ©}
C Allows Conversions from Signed to Unsigned Integer Constants
m By default are considered to be signed integers
short int x = 15213; e Exception: unsigned, if too big to be signed but fit in unsigned
:;j;g"‘;:{s"m in€ : _(:::;gl.‘ed shore) x; m Unsigned if have “U” as suffix
aneioned short in€ uy - (unsigned short) y; 0U, 429496725%u <:] lowercase is better here
Casting
m Explicit casting between signed & unsigned same as U2T and T2U
Resulting Value int tx, ty;
= No change in bit representation unsigned ux, uy;
= Nonnegative values unchanged ex = (lnt)_“x;<
o ux=15213 uy = (unsignedity;
= Negati s change into (large) positive values! [|mp|lfli czfstlng also occurs via assignments and procedure calls
® uy(= 50323 @‘ 7
uy = ty; qD re <7 B
CS 105

—32— CS 105

-33-

HNC CS))
n

Casting Surprises "

Summary: Casting Signed — Unsigned:

Basic Rules

HNC CS))
n

. . o o
Expression Evaluation)) L)
I - ! Lo . . L Bit pattern is maintained—but reinterpreted
u If you mix unsigned and signed in single expression, sighed values are implicitly
cast to unsigned Can have unexpected effects: adding or subtracting 2%
= Including comparison operations <, >, ==, <=, >=
= Examples for W= 32
Constant, Constant, Relation Evaluation In expres.smn containing signed and unsigned int:
m int is cast to unsigned!!
0 Ou
-1 0
-1 Ou
2147483647 -2147483648
2147483647u -2147483648
-1 -2
(unsigned)-1 -2
2147483647 2147483648u
~34- 2147483647 (int)2147483648u s 105 —%- cs 105
HACC5)) HACC5))
- .) - . 2
Sign Extension 2 Sign Extension Example 7
©} ©}
. short int x = 15213;
TaSk- int ix = (int)x;
m Given w-bit signed integer x short int y = -15213;
= Convert it to w+k-bit integer with same value int iy = Gnt)y;
Rule:
. . . Decimal Hex — Binary
= Make k copies of sign bit: % 15213 B 6D) £0111011 01101101
B X = Xy g yeees Xpt s Xt s Xpyp 9eees Xo ix 15213 00 00(3B—6D{ 00000000 00000000(00111011 01101101
_ v -15213 €4 93 11000100 10010011
k copies of MSB < w—— > iy -15213[FF FFlCc4 93] 11111111 11111111 11000100 10010011
CIrTT -« TTT1
m Converting from smaller to larger integer data type
= C automatically performs sign extension
X 5
(0 50 IR 1 I 1 N I
-37- <« k w CS 105 -38- CS 105

HMC. €Sy
3

HNC CS))
n

Negating with Complement & Increment 2 Unsigned Addition =
Claim: Following holds for 2’s complement Operands: whits w [T <<~ TTT1
~x + 1 == -x + v [OIT <<+~ "TTT1T1]
Complement True Sum: w+1 bits wev IO <=+ 1111
m Observation: ~x + x == 1111..11, == -1 Discard Carry: whits ~ UAdd (u,»y LI =<+ < TTT]
/Al Wil
* peppLLed Standard Addition Functi
| andar ition Function
ro= @—HEEEE m |gnores carry output
-1 Implements Modular Arithmetic
Increment s = UAdd,(u,v) = u+v mod2%
mex o+)+ (A + 1) = X+ (-x +)
mex o+l == =x UAdd, () = { utv u+v<a”
Warning: Be cautious treating int’s as integers w2 poead
-39-m OK here (associativity and commutativity hold) CS 105 ~40- CS 105
HNCCS)) HNC. €S}y
) ags) . 5)
Two’s-Complement Addition 2 Detecting 2’s-Complement Overflow =
Operands: w bits w IT =-+ TTT1 Task PR
+ v I =~~~ 17111 = Given s = TAdd,(u, V) PosOver
True Sum: w+1 bits wev 1T -~ =+ 1111 = Determine if s = Add,(u, v) 2wt
= Example
Discard Carry: w bits TAdd,(u, v) LIIT =-- TTT] int s, u, v 0
. . . . s =u+ v;
TAdd and UAdd have identical bit-level behavior
= Signed vs. unsigned addition in C: Claim
int s, £, u, v; = Overflow iff either: L NegOver
s = (int) ((unsigned)u + (unsigned)v); u,v<0,s20 (NegOver)
u,v20,s<0 (PosOver)
t=u+v
= Will giv
CS 105

—41-

CS 105

—42-

HNC CS))
»

A Fun Fact {1

Multiplication

HNC CS))
»

©} ©}
Official C standard says overflow is “undefined” Computing exact product of w-bit numbers x, y
m Intention was to let machine define what happens m Either signed or unsigned
Recently ISO C committee and compiler writers have decided “undefined” Ranges
means “compiler gets to choose” u Unsigned: 0< x* y < (2% 1)2 =
= Can generate 0, biggest integer, or anything else ® Up to 2w bits
m Or if compiler is sure it’ll overflow, it can optimize out completely m Two’s complement min: x * y > (-2%1)*(2w1-1) = —22w24 2wl
m Generates faster—but wrong!—code ® Up to 2w-1 bits (including 1 for sign)
= This can introduce some lovely bugs (e.g., it's tricky to check for overflow) = Two’s complement max: x * y < (-2¥1) 2 = 222
. e Up to(2w bits, but only for (TMin,,)?
Fight between compiler community and OS/security community over this .
issue Maintaining exact results
= Would need to keep expanding word size with each product computed
= Done in software by “arbitrary-precision” arithmetic packages
—43- CS 105 —44 - CS 105
HACC5)) HNC. €S}y
. aggn 5 . - . agyn L
Power-of-2 Multiply by Shifting r Unsigned Power-of-2 Divide by Shifting r
Operation Quotient of unsigned by power of 2
mu << kgivesu * 2 mu >> kgives Lu / 2]
m Both signed and unsigned m Uses logical shift
k k
o OOIT—=<+"TTT] u [TTe<~T THINSSSNINN Binary Point
Operands: w bits Operands:
* 2t [0 <« JoTaJo] «+~ T0J0] / 2+ [0+« TOTIJO] =+~ JOJ0O] /
True Product: w+k bits u - 2% [o] <=~ To]0] Division: u/2t [Jeee TTTTTeeeT] |-_
Discard k bits: w bits UMult, (u, 2) [0 - - - [O]0] Result: Lu/2¢] [Il 11
TMult, (u , 2%) — -
Examples Division | Computed Hex Binary
mu << 3 u* 8 el ,‘/§ x 15213 15213 3B 6D| 00111011 01101101
[l x >> 1 7606.5 7606] 1D B6| 00011101 10110110
mu<<5-u<<3 == u*24 2+ claci % >> 4 950.8125 950] 03 B6| 00000011 10110110
= Most machines shift and add much faster than multiply x >> 8 | 59.4257813 59| 00 3B| 00000000 00111011
e Compiler generates this code automatically j L/ / /
— 45— - clecir CS 105 —46— CS 105

HNC CS))
»

HNC CS))
»

Arithmetic: Basic Rules ok Why Should | Use Unsignhed?
O O
Addition: Don’t use without understanding implications
= Unsigned/signed: Normal addition followed by truncate; m Easy to make mistakes
same operation on bit level unsigned i;
= Unsigned: addition mod 2% for (i = ent - 2; i >= 0; i--)
o Mathematical addition + possible subtraction of 2% a[i] += a[i + 1];
= Signed: modified addition mod 2" (result in proper range)
e Mathematical addition + possible addition or subtraction of 2% m Can be very subtle
#define DELTA sizeof (int)
T . int i;
Multlpllcatlon. for (i = CNT; i - DELTA >= 0; i —-= DELTA)
= Unsigned/signed: Normal multiplication followed by truncate; same operation on bit
level
= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2* (result in range -2"-' to 2-1-1)
—47 - CS 105 —-48-— Cs 105
HACC5)) HACC5))
. . . 1 . 2
Counting Down with Unsigned 2 Why Should | Use Unsighed? (cont.) =
Proper way to use unsigned as loop index Do Use When Performing Modular Arithmetic
unsigned i; = Multiprecision arithmetic
for (i = ent - 2; i < ent; i--)) .
a[i] += a[i + 11; Do Use When Using Bits to Represent Sets
See Robert Seacord, Secure Coding in C and C++ = Logical right shift, no sign extension
= C Standard guarantees unsigned addition will behave like modular arithmetic Do Use for Very Large Arrays
® 0-1-> UMax = Signed index doesn’t have range
Even better Do Use for Bit Fields
#::anlud(.e <sys/types.h> = Need Logical Right Shift
size_t i;
for (i = cnt - 2; i < cnt; i--)
a[i] += a[i + 1];
m Data type size_t is unsigned value with length = word size
m Code will work even if cnt = UMax
CS 105

. . 5
49" But what if cnt is signed and < 07? CS 105

—50—

Byte-Oriented Memory Organization

(O]

HMC. €Sy
3

Machine Words

HMC. €Sy
3

)
»° o Any given computer has a “word size”
N & = Nominal size of integer-valued data
| | | |] | | | | | | e ...and of addresses
Programs refer to data by address = Until e_ibout 2010, most machines used 32 bits (4 bytes) as word size
. e Limits addresses to 4GB (232 bytes)
= Conceptually, envision it as a very large array of bytes
o In reality it’s not, but can think of it that way . . .
= An address is like an index into that array = Now most real” machines (even phones) have 64-bit word size
. . e Potentially, could have 18 PB (petabytes) of addressable memory
® ...and, a pointer variable stores an address
e That's 18.4 X 105
. . . “ »
Note: system provides private address space to each “process = Machines still support multiple data formats
= Think of a process as a program being executed e Fractions or multiples of word size
= So, a program can clobber its own data, but not that of others e Always integral number of bytes
-51— CS 105 -52— CS 105
HACC5)) HACC5))
- . - 3 -]
Word-Oriented Memory Organization 2 Byte Ordering r-
O O
32-bit 64-bit ap e . R
Addresses specify byte Words Words Bvtes Addr. So, how are the bytes within a multi-byte word ordered in memory?
locations nad 0000 Conventions
r
u Address of first byte in word = || ooo1 = Big Endian: Sun, PPC Mac, Internet
u Addresses of successive — adar | — gggg ® Most significant byte has lowest address
word_s differ by 4 (32-bit) or 8 00=00 1 o004 m Little Endian: x86, ARM processors running Android, iOS, and Windows
(64-bit) Addr 1 o005 e Least significant byte has lowest address
0004 0006
0007
0008
Adar 0009
0008 | | puar 0010
= 0011
0008 0012
Addr 0013
0012 0014
-53- 0015 CS 105 -54 - CS 105

KMC. €Sy HNC €S}y
)«)«

Byte Ordering Example " Representing Strings r

O
‘ char s[6] = "15213";
Example Strings in C
u Variable x has 4-byte value of 0x01234567 = Represented by array of characters
= Address given by &x is 0x100 = Each character encoded in ASCIl format 1A32 Sun
e Standard 7-bit encoding of character set 31 31 | 0x100
e Character “0” has code 0x30
» Digiti has code 0x30+i 35 35
Big Endian 0x100 0x101 0x102 0x103 Stri Ig;‘ ! 1db 11t inated 32 32
rin null-termin
[[[or [23] 45767] [| " String show'c be nu-terminate 31 31
o Final character ="\0
Little Endian 0%100 0x101 0x102 0x103 e =3 23
Compatibilit
00 00

[[Terfas]2sfoa] [] 4)
m Byte ordering not an issue (yay!)

And it will
drive you
nuts!

This is
what we
use in 105

—55— Cs 105 —56— CS 105

