HNC.C8)y
=

Processes SEd

CS 105 o
“Tour of the Black Holes of Computing!” Def: A process is an instance of a running program
= One of the most profound ideas in computer science
m Not the same as “program” or “processor”
PI'OCQSSES Process provides each program with two key abstractions:
m Logical control flow
Topi e Each program seems to have exclusive use of the CPU Memory
opics i m Private address space Stack
= Process context switches e Each program seems to have exclusive use of main memory H
m Creating and destroying processes] . L eap
How are these illusions maintained? ga;a
ode
m Process executions interleaved (multitasking)
m Address spaces managed by virtual memory system CPU
_o- €S 105
HNC_ 03y HNC_CS,y
. . . .)
Logical Control Flows Multiprocessing: The lllusion ry
. ; Memory Memory Memory
Each process has its own logical control flow
Stack Stack Stack
Heap Heap Heap
Process A Process B Process C Data Data e Data
| Code Code Code
Time | CPU CPU CPU
| | Registers | | Registers |
I

CS 105

Computer runs many processes simultaneously
= Applications for one or more users
e Web browsers, email clients, editors, ...
= Background tasks
e Monitoring network and /O devices
—4- o Web and mail servers, VPN management, auto-backups, Skype, ... CS 105

Multiprocessing: The (Traditional) Reality

Memory
Stack | : Stack Stack
Heap : Heap Heap
Data : Data .o Data
Code : Code Code
Saved 5 Saved Saved
registers | registers registers

CPU

| o) |

Single processor executes multiple processes concurrently
m Process executions interleaved (multitasking, also known as timeslicing)
m Address spaces managed by virtual memory system (later in course)

HNC_ 03y

HNC_CS,y

Multiprocessing: The (Traditional) Reality

Memory
Stack | : Stack Stack
Heap : Heap Heap
Data : Data .o Data
Code : Code Code
Saved 5 Saved Saved
registers | registers registers
ﬂ :
: CPU :
s :

Save current registers in memory

= Nonexecuting processes’ register values saved in memory
-5- CS 105 —6- cs 105
HNC_ 03y HNC_CS,y
. . g .) . . . g . 3
Multiprocessing: The (Traditional) Reality < Multiprocessing: The (Traditional) Reality ry
Memor! Memor!
Stack Stack | ! Stack Stack Stack | ! Stack
Heap : | _Heap | : Heap Heap : | _Heap | : Heap
Data : Data D ees Data Data : Data D e Data
Code : [Code | : Code Code : [Code | : Code
Saved ;| saved : Saved Saved . | saved : Saved
registers : |registers | registers registers : |registers | registers
z IT
1 cpu |] cpu
s i s :
Schedule next process for execution Load saved registers and switch address space (context switch)
cs 105

CS 105

HNC.C8)y
=

Multiprocessing: The (Modern) Reality B

O
Memor
Stack : [[stack Stack
Heap Heap | : Heap
Data Data D e Data
Code Code | : Code
Saved Saved 5 Saved
registers registers | registers
I CPU |: Multicore processors
| [Registers | [Registers | |: = Multiple CPUs (cores) on single chip
: : = Share main memory (and some of the
caches)

= Each can execute a separate process
e Scheduling of processors onto cores
done by kernel
€S 105

HNC.C8)y
=

Context Switching i

Processes are managed by a shared chunk of OS code called the kernel

= Important: the kernel is not a separate process, but rather runs as part of (or on
behalf of) some user process

Control flow passes from one process to another via a context switch

1
ProcessA | ProcessB
code ! code
: user code
i "
) Kool code } context switch
Time '
: l user code

kernel code } context switch

\

user code

i

_10- CS 105

Private Address Spaces

Each process has its own private address space

OxTEEEEEFFFEES

user stack
(created at runtime)
v

%rsp (stack pointer)

I

memory mapped region for

hared librari
0x2aaaaad00000 shared lioraries

I

run-time heap
(managed by malloc)

read/write segment
(data, .bss) 7 loaded from the

read-only segment >> executable file

(.init, .text, .rodata)

0x400000
0

unused

— 11— CS 105

HNC.C8)y
=

System-Call Error Handling iy
On error, Unix system-level functions typically return -1 and set global
variable errno to indicate cause.

Hard and fast rule:

= You MUST check the return status of every system-level function!!!
= Only exception is the handful of functions that return void

Example:

pid = fork();

if (pid == -1) {
fprintf (stderr, "fork error: %s\n", strerror(errno));
exit (1);

—12— CS 105

HNC.C8)y
=

HNC.C8)y
»

Error-Reporting Functions ry Error-Handling Wrappers ry
Can simplify somewhat using an error-reporting function: We simplify the code we present to you even further by using Stevens-
style error-handling wrappers:
\(Ioid unix_error (char *msg) /* Unix-style error */ pid_t Fork (void)
fprintf (stderr, "%s: %s\n", msg, strerror(errno)); { pid_t pid;
exit (1); - ’
! if ((pid = fork()) == -1)
unix_error ("Fork error");
(Aborting on error is generally bad idea but handy for demo programs)) Tetuznppidy
if ((pid = fork()) == -1)
unix_error ("fork error");
Note: assignment inside conditional is bad style but common idiom
Lousy approach in real life but useful for simplifying examples
-13- CS 105 —14- CS 105
HNC_CS)y
Obtaining Process IDs Process States : o 4

Every process has a numeric process ID (PID)
Every process has a parent

pid_t getpid(void)
m Returns PID of current process (self)

pid_t getppid(void)
m Returns PID of parent process

15— CS 105

From a programmer’s perspective, we can think of a process as being in one of three
states:

Running
m Process is either executing or waiting to be executed, and will eventually be scheduled (i.e.,
chosen to execute) by the kernel

Stopped
m Process execution is suspended and will not be scheduled until further notice (future lecture
when we study signals)

Terminated
m Process is stopped permanently (due to finishing or serious error)

T CS 105

HNC.C8)y
=

Terminating Processes 1

O
Process becomes terminated for one of three reasons:
m Receiving a signal whose default action is to terminate (future lecture)

m Calling the exit function
m Returning from the main routine (which actually calls exit internally)

void exit (int status)
= Terminates with an exit status of status

m Convention: normal return status is 0, nonzero on error
(Anna Karenina)
= Another way to explicitly set the exit status is to return an integer value from the main routine

exit is called once but never returns.

-17- CS 105

HNC.C8)y
»

Creating Processes: fork () : o 4

Parent process creates a new running child process by calling fork

int fork (void)
= Returns 0 to the child process, child’s PID to parent process

m Child is almost identical to parent:
® Child get an identical (but separate) copy of the parent’s virtual address space.
® Child gets identical copies of the parent’s open file descriptors, signals, and other system information
® Child has a different PID than the parent

fork is interesting (and often confusing) because it is called once but

Huh? Run that
by me again!

18- CS 105

fork Example

m Call once, return twice

. m Concurrent execution
pid_t pid;
int x = 1; = Can’t predict execution order of parent
. and child
pid = Fork(); .
if (pid == 0) { m Duplicate but separate address space

/* Child */ .
printf("child : x=3%d\n", ++x); " x has a value of 1 when fork returns in

int main()

exit (0); parent and child
} ® Subsequent changes to x are
/* Parent */ independent
ELintE{(Grarent st ing B’ m Shared open files
exit (0);

} fork.c " stdi stdout, stderrare
in both parent and child

linux> ./fork Important!!!

parent: x=0
child : x=2
T CS 105

HNCCS))

Modeling fork with Process Graphs o

A process graph is a useful tool for capturing the partial ordering of
statements in a concurrent program:
= Each vertex is the execution of a statement
= a » b means a happens before b
= Edges can be labeled with current value of variables
m print£ vertices can be labeled with output
m Each graph begins with a vertex with no incoming edges

Any topological sort of the graph corresponds to a feasible total ordering.

Total ordering of vertices
where all edges point
from left to right

—20- CS 105

Process Graph Example

int main()

{
pid_t pid;
int x = 1;

pid = Fork();

print£("child :
exit (0);
}

/* Parent */
printf("parent: x=%d\n",
exit (0);

if (pid == 0) { /* Child */
x=%d\n", ++x);

-=X);

x==1

HNC.C8)y
=

O

printf exit

parent: x=0

main

fork

printf exit

HNC.C8)y
»

Interpreting Process Graphs {2 P

Original graph:

child: x=2
prth
x==1 parent: x=0
main fork printf exit

Relabeled graph:

O

Feasible total ordering:

——e———— e
e £
a b c d a b f c e d
-21- CS 105 —22- CS 105
LS e, 5y

fork Example: Two consecutive forks

void fork2 ()
{
printf ("LO\n");
Fork();
printf("L1\n");
Fork();
printf ("Bye\n");
}

—23—

Ll

Bye
o
printf
Bye

Lo

printf

Ll

fork

printf
Bye

prﬁﬂ: £

Bye

printf fork

printf

Feasible output:

Lo
L1
Bye
Bye
L1
Bye
Bye

fork

printf

Infeasible output:

Lo
Bye
L1
Bye
L1
Bye
Bye

CS 105

fork Example: Nested forks in parent ' o .

—24 -

Bye Bye
Printf Printf
L1 12 Bye

void fork4 ()
{
printf ("LO\n");
if (Fork() != 0) {
printf ("L1\n");
if (Fork() != 0) { Lo
print£("L2\n");
}
}
printf ("Bye\n");
) Feasible output:
Lo
L1
Bye
Bye
L2
Bye

printf fork printf fork printf printf

Infeasible output:
Lo

Bye
L1
Bye
Bye
L2

CS 105

HNC_ 03y

fork Example: Nested forks in children

void fork5 ()
{
printf ("LO\n");
if (Fork() 0) {
printf ("L1\n"
if (Fork() == 0) {
printf("L2\n");

}
}
printf ("Bye\n");

—25-

L2 Bye

printf printf
Bye

printf fork printf
Lo Bye

printf fork printf

Feasible output: Infeasible output:
Lo Lo

Bye Bye
L1 L1
12 Bye

Bye Bye

Bye L2

CS 105

Reaping Child Processes

Idea

HNC.C8)y
=

O

» When process terminates, it still consumes resources

e Examples: exit status, various OS tables
= Called a “zombie”
e Living corpse, half alive and half dead

Reaping

m Performed by parent on terminated child (using wait or waitpid)

m Parent is given exit status information
n Kernel then deletes zombie child process
What if parent doesn’t reap?

u |f any parent terminates without reaping a child, then the orphaned child will be

reaped by init process (pid == 1)

m So, only need explicit reaping in long-running processes

® e.g., shells and servers
—26—

CS 105

Zombie Example

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 bash
6639 ttyp9 00:00:03 forks

void fork7()
{

if (fork() == 0) {
/* Child */
printf("Terminating Child, PID = %d\n",
getpid());
exit (0);
} else {
printf("Running Parent, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 bash
6642 ttyp9 00:00:00 ps
—27-

m ps shows child process as
“defunct”

HNC.C8)y
=

m Killing parent allows child to be

/ reaped

CS 105

HNC.C8)y
=

Nonterminating Child Example i

{

if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid());

while (1)
linux> ./forks 8 ; /* Infinite loop */
Terminating Parent, PID = 6675 } else {
Running Child, PID = 6676 printf ("Terminating Parent, PID = %d\n",
linux> ps getpid());

exit (0);

PID TTY TIME CMD
6585 ttyp9 00:00:00 bash
6676 ttyp9 00:00:06 forks

void forks ()

6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps

PID TTY
6585 ttyp9 00:
6678 ttyp9 00:

— 28—

= Child process still active even
though parent has terminated

m Must kill explicitly, or else will
keep running indefinitely

CS 105

HNC 8y
wait: Synchronizing with Children)
Parent reaps a child by calling the wait function

int wait (int *child_status)
m Suspends current process until one of its children terminates
m Return value is pid of child process that terminated
m If child_status != NULL, then integer it points to will be set to value that tells why
child terminated and gives its exit status:
e Checked using macros defined in wait.h

» WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

» See textbook for details

—29— CS 105

wait: Synchronizing with Children

void fork9() {
int child_status;
HC exit

if (fork() == 0) {
printf("HC: hello from child\n");
exit (0);

} else {
printf("HP: hello from parent\n");
wait (&child_status);

printf

HP

cr
Bye

}
printf ("Bye\n");

Feasible output:
HC

HP cT
cT Bye
Bye HC

~30-

printf("CT: child has terminated\n"); fork printf wait printf

Infeasible output:
HP

CS 105

HNC.C8)y
=

HNC. €5
)

Another wait Example
u |f multiple children completed, will take in arbitrary order
m Can use WIFEXITED and WEXITSTATUS to probe status

void fork1O ()
{
pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++) {
pid[i] = fork();
if (pid[i] == 0)
exit (100 + i); /* Child */
}
for (i = 0; i < N; i++) {
pid_t wpid = waiild._status);
if (WIFEXITED (child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child_status));
else
printf ("Child %d terminated abnormally\n", wpid);

—31- } cs 105

® waitpid(pid, &status, options)
e Can wait for specific process
e Various options available (see man page)
void forkll ()
{
pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++) {
pid[i] = fork();
if (pid[i] == 0)
exit (100 + i); /* Child */
}

for (i = 0; i < N; & {
pid_t wpid =pid[i], &child_status, 0);
if (WIFEXITED

d_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child_status));
else
printf("Child %d terminated abnormally\n", wpid);

—32- }

HNC.C8)y
=

CS 105

HNC.C8)y
=

execlp Example

HNC.C8)y
=

0

exec: Running New Programs B
O
int execlp(char *what, char *arg0, char *argl, .., NULL) = Runs “1s -1t /etc” in child process
= Loads and runs executable at what with args arg0, argl, ... = Output is to stdout (why?)
® what is name or complete path of an executable
® arg0 becomes name of process .
» Typically argo is either identical to what, or else contains only the executable Tam 0
filename from what . A
«“ » - pid_t pid;
e “Real” arguments to the executable start with arg1, etc. pid = fork();
o List of args is terminated by a (char *) 0 argument if (pid == 0) {
= Replaces code, data, and stack exaclp(flst, W1sH, | HSltd, i/etct, NULL)); ;
® Retains PID, open files, other system context like signal handlers fpfz’(‘:)f(“de"' LeEjconnandynotRcoundia)ly
exi H
m Called once and never returns (except if there is an error) }
o Differs from exit because process keeps running, but program executed is brand-new wait (NULL) ;
exit (0);
}
-33- €S 105 —34- Cs 105
HNC_ 03y HNC_CS,y
A) A 2
Summarizing {22 ¥ Summarizing (cont.) {22 ¥
O o
Spawning Processes
m Call to fork
Processes i X i i ® One call, two returns
m At any given time, system has multiple active processes
u But only one (per CPU core) can execute at a time Terminating Processes
m Each process appears to have total control of processor + private memory space = Call exit
® One call, no return
Reaping Processes
m Call wait or waitpid
Replacing Program Executed by Process
m Call execlp (or other exec variant)
e One call, (normally) no return
Cs 105

_35- CS 105

—36—

HNC.C8)y
=

Putting It All Together: The Shell =

Command-line interface is called a “shell”
= Because it wraps the OS kernel in something more usable

= Ordinary user program

Basic shell operation:
= Read line from user
= Break arguments apart at whitespace
m Execute command named by first argument
® fork a subprocess
® exec the command with the parsed arguments
® wait for command to finish

_37- CS 105

HNC.C8)y
=

Fancier Shell Features &

What if user wants whitespace in an argument?

m Put it inside quote marks: "..."or "..."

m Ordinary user program
By default, stdin, stdout, and stderr connected to terminal

m Can redirect stdin with < filename

m Can redirect stdout with> filename

m Can redirect stderr with 2> filename (ugh)

® Or do both stdout and stderr together, but syntax depends on chosen shell

Put s after command to ask shell to skip wait

m Lets slow programs run in the background while user continues to work

—38-— CS 105

Pipes

Most commands designed to have simple output
= Makes it easy for other programs to parse

= Example sequence:
® 1ls -1 > tempfile
® sort -k 5 < tempfile
® rm tempfile

Hooking programs together is common; temporary files are nuisance
m Instead, just write1s -1 | sort -k 5
® Hooks stdout of 1s to stdin of sort
e Connection made by shell without any temporary file
» We’ll skip details of the magic (see the pipe system call)
= Many commands designed to be used this way
m Extremely powerful feature

—39- CS 105

