HMC C8)y
3 ok

Physically Addressed System cEd
CS 105 ©
“Tour of the Black Holes of Computing!” Main memory
0:
1:
Virtual Memory Phisice adaress 2.
cpu a: J
5:
6:
7:
8: —
Topics :
u Address translation M'l’E
= Motivations for VM
m Accelerating translation with TLBs Data word
Used in “simple” systems like embedded microcontrollers in devices
such as thermostats, car tires, elevators, digital picture frames
_o- CS 105
IHHC €Sy IHHC €Sy
-) .)
Virtually Addressed System ‘ o What Is Virtual Memory? ‘ o
Main memory If you think it’s there, and it is there...it’s real.
CPU Chip o If you think it’s not there, and it really isn't there...it's nonexistent.
V‘““j{,:';dfess Physical address _3:83 | If you think it’s not there, and it really is there...it's transparent.
400:
il 4100 @ 400 s00: If you think it’s there, and it’s not really there...it’s imaginary.

Data word
Used in all modern servers, laptops, and smart phones

One of the great ideas in computer science
_3- €S 105

is imaginary memory: it gives you the illusion of a memory
arrangement that’s not physically there.

_4- cs 105

IHHC €Sy

Address Spaces BT

Linear address space: Ordered set of contiguous non-negative integer addresses:
{0,1,2,3...}

Virtual address space: Set of N = 2" virtual addresses (typically has inaccessible “holes”)
{0,1,2,3,...,N-1}

Physical address space: Set of M = 2™ physical addresses (may also have “holes”)
{0,1,2,3, ..., M-1}

Clean distinction between data (bytes) and their attributes (addresses)
Every byte in main memory has one physical address and zero or more virtual addresses

5 cs 105

IHHC €Sy

Why Virtual Memory (VM)? i

O

Uses main memory efficiently

m Use DRAM as a cache for parts of a large virtual address space
Simplifies memory management

m Each process gets the same uniform linear address space
Isolates address spaces

= One process can’t interfere with another’s memory

m User program can’t access privileged kernel information and code
_6- Cs 105

IHHC €Sy

VM as Tool for Caching o
Conceptually, virtual memory is an array of N contiguous bytes stored on
disk.

The contents of the array on disk are cached in physical memory (DRAM
cache)
= These cache blocks are called pages (size is P = 2° bytes)

Virtual memory Physical memory

VP 0 | Unallocated
VP 1 [Cached Empy | PPO
Uncached \ PP1
Unallocated Empty
Cached
Uncached >< Empty
Cached PP 2mr.1

VP 2.1 | _Uncached b

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM
7o CS 105

IHHC €Sy

DRAM “Cache” Organization ik

&)
DRAM (main memory) “cache” organization driven by the enormous miss
penalty
= DRAM is about 70x slower than SRAM
= Hard disk is about 70,000x slower than DRAM
Consequences
m Large page (block) size: typically 4-8 KB, sometimes 4 MB or more
m Fully associative
e Any VP can be placed in any PP
® Requires a “large” mapping function—different from CPU caches
= Highly sophisticated, expensive replacement algorithms
® Too complicated and open-ended to be implemented in hardware
m Write-back rather than write-through
-8- €S 105

HNC. €8}y

N g

Enabling Data Structure: Page Table

A page table is an array of page table entries (PTEs) that maps virtual
pages to physical pages.
m Per-process kernel data structure in DRAM

Physical page (DRAM)
number or
Valid disk address z: ; PPO
PTEO| 0 null e
1 -—
VP4 PP3
1 o«
)] e
1 CaS
0 null Virtual memory
o POz I (disk)
i e A
Memory-resident .. .
page table S~ ~
A [w3]
(DRAM) .~ [_ws]
s 1
? T3] csS 105

(HMC. CS‘L
. 2%
Page Hit 1
&)
Page hit: reference to VM word that is in physical memory (DRAM “cache”
hit)

Virtual address Physical page (DRAM)
number or
Valid _disk address VEID PPO
PTEO[0 il uee
n vp7
VP4 PP3
1 —
) .
1 CaS
0 null Virtual memory
0 S AN (disk)
el
Memory-resident \\ \\
e . s
(DRAM) S
~10- s 108

HNC. €8}y
3k
Page Fault {2}
&)
Page fault: reference to VM word that is not in physical memory (DRAM
cache miss)

. Physical memory
Physical page

Virtual address number or (DRAM)
Valid _disk address HERD PPO
PTEO| 0 null VP2
1 VP 7
VP4 PP3
1 —
0 0
1 <
0 null Virtual memory
0 . RN (disk)
Tl]
Memory resident ~~_ \\
page table Sso ~
(DRAM) . vP3
Saal VP4
-11- VP7 cs 108

(HMC. 83y
) G

5

Handling Page Fault

Page miss causes page fault (an exception)

. Physical memory
Physical page

Virtual address number or (DRAM)
Valid _disk address HERD PPO
PTEO| 0 null VP2
1 VP 7
VP4 PP3
1 —
0 0
1 <
0 null Virtual memory
0 . RN (disk)
Tl]
Memory resident ~~_ \\
page table Sso ~
(DRAM) S vP3
Saal VP4
-12- VP7 cs 105

Handling Page Fault o

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Handling Page Fault o2 1
&)

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

Physical page Physical page
number of (DRAM) number of (DRAM)
Valid disk address zl': ; PPO Valid disk address zz ; PPO
PTEO[0 null U PTEO[0 null VP 7
i —_— VP4 PP3 i = VvP3 PP3
0 . 1 —
1 Cas 0 .
0 null - Virtual memory 0 null ~. Virtual memory
0 - Sl (disk) 0 s K (disk)
el 7]
Memoryresident ™. " Memoryresident ™. ™>~
page table Sl ~ page table
(DRAM) ISY — (DRAM)
o [wa]
w7]
—13- Cwr] s 105 —14- ve7 s 105
Handling Page Fault Allocating Pages
Page miss causes page fault (an exception) Allocating a new page (VP 5) of virtual memory.
Page fault handler selects a victim to be evicted (here VP 4)
Offending instruction is restarted: page hit! .
3 Physical memory Physical memory
Physical page (DRAM) Physical page (DRAM)
ual address number or e ual address number or
Valid _disk address e valid _disk address Vi lPeo
PTEO[0 null Vob PTEO[0 null Vob
i —_— VP3 PP3 i = VvP3 PP3
1 — 1 —
[. 0 .
0 null ~. Virtual memory O e ~_ Virtual memory
0 Y ~k. (disk) 0 .« (disk)
L L
o = ~ N VP 1
Memory resident ~~_ \\ Memory resident ‘11\ \\
page table Sso sl page table DARSUERNY
(DRAM) (DRAM) S
Key point: Waiting until the miss to copy the page to > _ >
DRAM is known as demand paging
w7]
—15- w7] s 105 —16- N ve7 s 105

Locality to the Rescue Again! : o :

Virtual memory seems terribly inefficient, but it works because of locality.

At any point in time, programs tend to access a set of active virtual pages
called the working set
m Programs with better temporal locality will have smaller working sets

VM as Tool for Memory Management

IHHC €Sy

Key idea: each process has own virtual address space

= Can view memory as a simple linear array

= Mapping function scatters addresses through physical memory
e (But well-chosen mappings can improve locality in L1-L3 caches)

. Address 0 Physical
Virtual translation ysical
. . . . Address VP 1 Address
If working set size < main memory size Space for VP2 —PP2 | Space
m Good performance for one process after compulsory misses Process 1: (DRAM)
wl 1
. . . . (e.g., read-onl
If SUM(working set sizes) > main memory size PP6 | Sirarycode)
m Thrashing: Performance meltdown where pages are swapped (copied) in and out Virtual [PP8_|
continuously Address VP1
Space for VP2
Process 2:
17— €S 105 — 18- N_1|:| M.1|:| €S 105
IHHC €Sy IHHC €Sy
VM as Tool for Memory Management {7 Simplifying Linking and Loading o{ %
Memory allocation L - 4 Memory
i : Linki ng Kernel virtual memory invisible to
m Each virtual page can be mapped to any physical page user code
. P . . . = Each program has similar virtual address User stack
m A virtual page can be stored in different physical pages at different times space (created at runtime) srsp
Sharing code and data among processes n Code, stack, and shared libraries always v (stack
= Map multiple virtual pages to the same physical page (here: PP 6) start at same virtual address 4 pointer)
Virtual 0 Address 0 Physical Memurz-madplp:d region for
lirtua . A shared libraries
Address VP 1 translation Address Loading
Space for VP2 \ PP 2 Space m execve allocates virtual pages for .text and
Process 1: (DRAM) .data sections & creates PTEs marked as T . bex
N-1 l:l invalid Run-time heap
(e.g. read-only = The .text and .data sections are copied, (created by malloc)
PPE | "ibrary code) page by page, on demand by the virtual : Loaded
Virtual 555 memory system R“(_‘Z:’;:'e _5:2':)2’“ trom
Address VP 1 ® Called “paging in” the program the
Space for VP2 Read-only segment executable
Process 2: (.init, .text, .rodata) file
-19- N-1 l:l M-1 I:l CS 105 -20- o Unused CS 105

IHHC €Sy

VM as Tool for Memory Protection EY

IHHC €Sy

- %
VM Address Translation {2
&) &)
Extend PTEs (page table entries) with permission bits Virtual Address Space
Page-fault handler checks these bits before remapping n V={0,1,.., N-1}
m |f violated, send process SIGSEGV (segmentation fault) Physical Address Space
Physical —
Processi: USER READ WRITE EXEC Address Address Space " P={0,1,..., M-1}
vPo: [Yes | Yes | No \‘ Yes PP 6 Address Translation
VP 1: No Yes Yes Yes PP 4 | I— .
VP2 | Yes | Yes | Yes | No PP2 ERi2 " MAP'_ vV~ P U}
N m For virtual address a:
H RS e VMAP(a) = a’ if data at virtual address a is at physical address a’in P
" PP6 | ® MAP(a) = [J if data at virtual address a is not in physical memory
Processj: USER READ WRITE EXEC Address - » Either invalid or stored on disk
VPO:| No Yes No Yes PP9 PP9
VP1:| Yes Yes Yes Yes PP 6
VP2:| No | Yes | Yes | Yes PP11 PP 11
-21- CS 105 —-22— CS 105
IHHC €Sy IHHC €Sy
. 2 . . 2
Address-Translation Symbols 12! Address Translation With a Page Table 2

Basic Parameters

= N =2": Number of addresses in virtual address space
= M = 2™ : Number of addresses in physical address space

u[P = 2@ : Page size (bytes)

Components of the virtual address (VA)

VPO: Virtual page offset
TLBI: TLB index
TLBT: TLB tag

VPN: Virtual page number‘]

Components of the physical address (PA)

PTE: Page table entry

PPN: Physical page number
PPO: Physical page offset (same as VPO)

—23—

There’s a bunch of these:
It’ll take time to learn them.
The highlighted ones are
the 8 most important. The
greyed ones are the least.

Cs 105

Virtual address
n-1 P p1 0
Page table
base register —{ Virtual page number (VPN)] Virtual page offset (VPO) ‘
(PTBR)
Page table address Page table
for process Valid Physical page number (PPN)
L—

Valid bit = 0:
page not in memory
(page fault)

m-1 P p1 0

Physical page number (PPN) Physical page offset (PPO)

Physical address = PPN x P + PPO
24—

Cs 105

IHHC €Sy

: : % : . =
Address Translation: Page Hit cEd Address Translation: Page Fault cEd
&) &)
|mm o m age fault handler
CPU Chip P% ! 0o
o e i o l
cPU MMU ;) Cache/ CPU Chip —— PTEA Victim page
PA Memory o 9
%) cPU 2 MMU PTE Cache/ Disk
M
o o emery New page
Data e
. 1) Processor sends virtual address to MMU
1) Processor sends virtual address to MMU 2-3) MMU fetches PTE from page table in memory
2-3) MMU fetches PTE from page table in memory 4) Valid bit is zero, so MMU triggers page fault exception
4) MMU sends physical address to cache/memory 5) Handler identifies victim (and, if dirty, pages it out to disk)
5) Cache/memory sends data word to processor 6) Handler “pages in” (reads) new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction
—25- cs 105 -26- cs 105
IHHC €Sy IHHC €Sy
- 2 - . . 2
Integrating VM and Cache cEd Speeding up Translation With a TLB cEd
&) &)
Page table entries (PTEs) are cached in L1 like any other memory word
PTE m PTEs may be evicted by other data references
CPU Chip PTE m PTE hit still requires a small but significant L1 delay (3-4 cycles)
:IEA o Net effect is to double time needed to access data in L1 cache!
PTEA . . .
PTEA s Solution: Translation Lookaside Buffer (TLB)
CPU VA MMU oA A e Memory » Tiny set-associative (or fully associative) hardware cache inside MMU
| miss = Maps virtual page numbers to physical page humbers
@ Data = Contains complete page table entries for small number of pages
L1
Data cache
VA: virtual , PA: physi , PTE: page table entry, PTEA = PTE address
Zo7- €S 105

—28— Cs 105

HNC C8)y
-

Accessing the TLB o i

(@)
MMU uses the VPN portion of the virtual address to access the TLB:
T=2tsets
VPN
TLBT hes tag
of line withinset n-1 p+tp+t-1 p p-1 0
TLB tag (TLBT) [TLB index (TLBI)[VPO
seto [[V] [] v | [Geed e |
TLBI selects the set
set1 |[] G [rre]| ([Cogd o 1| «—
st [[0 Gl e]
—29— Cs 105

HNC C8)y
-

TLB Hit -

CPU Chip
TLB
0 PTE
VPN o
VA PA
CPU MMU 0 Cache/
Memory
Data
A TLB hit eliminates a cache or memory access to get the PTE
—30- Cs 105

HNC C8)y
-

TLB Miss o2

CPU Chip
LB o
(2] PTE
VPN
VA PTEA
CPU MMU Cache/
PA Memory
Data
A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?
31— €S 105

HNC C8)y
-

Multi-Level Page Tables 1

O
Level-2
Suppose: Tables
= 4KB (2'?) page size, 48-bit virtual address space, 8-byte PTE
Problem:
= Would need a 512 GB page table! Level-1
® 248 % 212 ¥ 23 = 239 pytes Table

—

Common solution: Multi-level page table

Example: 2-level page table
m Level 1 table (always memory-resident): each PTE points to a
page table

m Level 2 table (paged in and out like any other data): each PTE
points to a page
—32- Cs 105

HMC €8y
5k

A Two-Level Page Table Hierarchy o 12

HHC €Sy

Translating With a k-level Page Table : o ~

Level-1 Level-2 Virtual
page table page tables memory
VPO Page table
/ base register
PTEO PTEO (PTBR)
VP 1023 2K allocated VM pages

PTE1 P’TE"1.023 VP 1022 for code and data n-1 VIRTUAL ADDRESS p-1 0
AT [[VPNT_ [VPN2 | .. [;VPNk | VPO
PTE 3 (null)
PTE 4 (null) VP 2047 Level-1 Level-2 Level-k

PTEO
page table| page table page table

PTE 5 (null)
PTE 6 (null) PTE 1023
PTE7 (null) Gap 6K unallocated VM pages

PTES

1023 null

(1K-9) [—PTEs—— m-1

null PTEs | 1023 |
FTE1023 \A | unallocated| 1023 unallocated pages ‘
ages PHYSICAL ADDRESS
. VP 9215 1 allocated VM page
32-bit addresses, 4KB pages, 4-byte PTEs for the stack
-33- : Cs 105 -34- Cs 105
HMC €8y
S 1

Programmer’s view of virtual memory
m Each process has its own private linear address space
m Cannot be corrupted by other processes

System view of virtual memory

m Uses memory efficiently by caching virtual memory pages
e Efficient only because of locality

= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point to check
permissions

_35- cs 105

