
NetworkingNetworking

Topics

✁ Network model

✁ Client-server programming model

✁ Sockets interface

✁ Writing clients and servers

CS 105
“Tour of the Black Holes of Computing”

– 12 – CS 105

Programmer’s View of InternetProgrammer’s View of Internet

1. Hosts (computers, phones, etc.) are mapped to a set of 32-bit IP(v4)
addresses or 128-bit IP(v6) addresses

✁ 134.173.42.100 is Knuth (IPv6: 2620:102:2001:902:f069:3ff:fe3e:8a5c or
2620:102:2001:902::100)

2. IP addresses are mapped to set of identifiers called Internet domain
names

✁ 134.173.42.2 is mapped to www.cs.hmc.edu

✁ 128.2.203.164 is mapped to www.cs.cmu.edu

✁ Mapping is many-to-many

3. Process on one Internet host can communicate with process on another
via a connection—identified by IP Address, Port Number pair

– 13 – CS 105

Transferring Data via a NetworkTransferring Data via a Network

protocol
software

client

LAN1
adapter

Host A

data

data PH FH1

data PH

data PH FH2

LAN1 LAN2

data

data PH data PH FH2

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8)

internet packet

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Routers

FH1

data PH

protocol
software

server

LAN2
adapter

Host B

Frame

– 25 – CS 105

Client-Server TransactionsClient-Server Transactions

(Almost) every network application is based on client-server model:

✁ Server process and one or more client processes

✁ Server manages some resource.

✁ Server provides service by manipulating resource for clients (or just sending it to
them)

Client
process

Server
process

1. Client sends request

2. Server

handles

request

3. Server sends response4. Client

handles

response

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

– 30 – CS 105

Using Ports to Identify ServicesUsing Ports to Identify Services

Web server
(port 80)

Client host

Server host 134.173.42.2

Echo server
(port 7)

Service request for
134.173.42.2:80

(i.e., Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
134.173.42.2:7

(i.e., echo server)

Kernel

Kernel

Client

Client

– 33 – CS 105

Sockets InterfaceSockets Interface

Set of system-level functions used in conjunction with Unix I/O to build
network applications.

Created in the early 80’s as part of the original Berkeley distribution of
Unix that contained an early version of the Internet protocols.

Available on all modern systems

✁ Unix variants, Windows, OS X, IOS, Android

– 34 – CS 105

What is a socket?

✁ To the kernel, a socket is an endpoint of communication

✁ To an application, a socket is a file descriptor that lets the application read from or
write to the network
� Remember: All Unix I/O devices, including networks, are modeled as files

Clients and servers communicate with each other by reading from and
writing to socket descriptors

Main distinction between regular file I/O and socket I/O is how the
application “opens” the socket descriptors

������ ���	��

SocketsSockets

clientfd serverfd

– 35 – CS 105

������
�

���	��

�����
�

Overview of Sockets InterfaceOverview of Sockets Interface

Client Server
socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

getaddrinfo getaddrinfo

– 36 – CS 105

������
�

���	��

�����
�

Sockets InterfaceSockets Interface

Client Server
socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

getaddrinfo
``

getaddrinfo
``

– 37 – CS 105

Socket Address StructuresSocket Address Structures

Generic socket address:

✁ For address arguments to connect, bind, and accept

✁ Intended to be generic and future-proof
� …but guessed wrong; too small for IPv6! (Thus, union needed; see later)

struct sockaddr {
uint16_t sa_family; /* Protocol family */
char sa_data[14]; /* Address data. */

};

sa_family

���������������

– 38 – CS 105

Socket Address StructuresSocket Address Structures

IPv4-specific socket address:

0 0 0 0 0 0 0 0

sa_family

���������������

struct sockaddr_in {
uint16_t sin_family; /* Protocol family (always AF_INET) */
uint16_t sin_port; /* Port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

– 39 – CS 105

Socket Address StructuresSocket Address Structures

IPv6-specific socket address:

...

sa_family

���������������

struct sockaddr_in6 {
uint16_t sin6_family; /* Protocol family (always AF_INET6) */
uint16_t sin6_port; /* Port num in network byte order */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IP addr in network byte order */
uint32_t sin6_scope_id; /* scope id (new in RFC2553) */

};

sin_port

AF_INET6

sin6_flowinfo

sin6_family

sin6_addr sin6_scope_id

– 40 – CS 105

Truly Generic Socket Address StructureTruly Generic Socket Address Structure

Union that can handle IPv4 or IPv6

✁ For casting convenience, we adopt the Stevens convention: SA is declared as a
generic type that can hold IPv4 or IPV6 socket address

✁ Must cast (struct sockaddr_in *) or (struct sockaddr_in6 *) to and from
(SA *) for functions that take socket-address arguments.

typedef union {
struct sockaddr_in client4;
struct sockaddr_in6 client6;

} SA;

– 41 – CS 105

������
�

���	��

�����
�

Sockets InterfaceSockets Interface

Client Server
socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

getaddrinfo
``

getaddrinfo
``

– 42 – CS 105

Sockets Interface: socketSockets Interface: socket

Clients and servers use the socket function to create a socket descriptor:

Example:

Protocol-specific! Best practice is to use getaddrinfo to generate
parameters automatically, so that code is protocol-independent (see
example code later).

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET6, SOCK_STREAM, 0);

��������	
����
��
�
�
�	���

����
���
�		�	

��������	
����
���
	�����

����
��
���
���
�����
��
�

�������
����������

– 43 – CS 105

������
�

���	��

�����
�

Sockets InterfaceSockets Interface

Client Server
socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

getaddrinfo
``

getaddrinfo
``

– 44 – CS 105

Sockets Interface: connectSockets Interface: connect

A client establishes a connection with a server by calling connect:

Attempts to establish a connection with server at socket address addr

✁ If successful, then clientfd is now ready for reading and writing.

✁ Resulting connection is characterized on client by socket pair

(x:y, addr.sin_addr:addr.sin_port)
� x is client IP address

� y is ephemeral (temporary) port that uniquely identifies client process on client host

� Server has similar (IP, port) socket pair but port is permanent & well-known to client

Best practice is to use getaddrinfo to supply arguments addr and
addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

– 45 – CS 105

������
�

���	��

�����
�

Sockets InterfaceSockets Interface

Client Server
socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

getaddrinfo
``

getaddrinfo
``

– 46 – CS 105

Sockets Interface: bindSockets Interface: bind

Server uses bind to ask kernel to associate a socket descriptor (fd
returned by socket) with the server’s socket address:

Reading from sockfd will return bytes that arrive on the connection whose
endpoint (at this end) is addr.

Similarly, writes to sockfd are transferred along connection whose
endpoint is addr.

Again, best practice is to use getaddrinfo to supply arguments addr and
addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

– 47 – CS 105

������
�

���	��

�����
�

Sockets InterfaceSockets Interface

Client Server
socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

getaddrinfo
``

getaddrinfo
``

– 48 – CS 105

Sockets Interface: listenSockets Interface: listen

By default, kernel assumes that descriptor from socket function is an
active socket that will be on the client end of a connection

A server calls listen to tell kernel that a descriptor will be used by a
server rather than a client:

Converts sockfd from an active socket to a listening socket that can
accept connection requests from clients

backlog is a hint about how many outstanding connection requests the
kernel should queue up before starting to refuse requests

int listen(int sockfd, int backlog);

– 49 – CS 105

������
�

���	��

�����
�

Sockets InterfaceSockets Interface

Client Server
socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

getaddrinfo
``

getaddrinfo
``

– 50 – CS 105

Sockets Interface: acceptSockets Interface: accept

Server waits for connection requests from clients by calling accept:

Waits for connection request to arrive on connection bound to listenfd,
then fills in client’s socket address in addr and size of socket address
in addrlen

Returns a (different) connected descriptor that can be used to
communicate with client via Unix I/O routines.

int accept(int listenfd, SA *addr, socklen_t *addrlen);

– 51 – CS 105

accept Illustratedaccept Illustrated

listenfd(3)

������
�����������	
��
����accept��

���������
���
������
�������
��

��	�
���������
�����
��

listenfd
clientfd

���	��

listenfd(3)

������

clientfd

���	��

����	���������
��
������
�������
�����

��		���������	
���������connect

�
������
�

�������

listenfd(3)

������

clientfd

���	��

����������������
�connfd ��
��

accept���	�����������
���
��connect��

�
������
���
��
���
���	�
������������

clientfd ����connfd
connfd(4)

– 52 – CS 105

Connected vs. Listening DescriptorsConnected vs. Listening Descriptors

Listening descriptor

✁ End point for client connection requests

✁ Created once and exists for lifetime of the server

✁ Only allows accept calls

Connected descriptor

✁ End point of the connection between client and server

✁ A new descriptor is created each time the server accepts a connection request from
a client

✁ Exists only as long as it takes to service client

Why the distinction?

✁ Allows concurrent servers that can communicate over many client connections
simultaneously
� E.g., each time we receive a new request, we fork a child or spawn a thread to handle the

request

– 53 – CS 105

������
�

���	��

�����
�

Sockets InterfaceSockets Interface

Client Server
socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

getaddrinfo
``

getaddrinfo
``

– 54 – CS 105

Echo Client Main RoutineEcho Client Main Routine
/* #include lots of stuff */

/* usage: ./echoclient host port */
int main(int argc, char **argv)
{

int clientfd;
size_t n;
char *host, *port, buf[MAXLINE];

host = argv[1];
port = argv[2];

if ((clientfd = open_clientfd(host, port)) == -1)
exit(1);

while (fgets(buf, sizeof buf - 1, stdin) != NULL) {
write(clientfd, buf, strlen(buf));
n = read(clientfd, buf, sizeof buf - 1);
if (n != -1) {

buf[n] = '\0';
fputs(buf, stdout);

}
}
close(clientfd);
exit(0);

}

– 55 – CS 105

Echo Client: open_clientfdEcho Client: open_clientfd
int open_clientfd(char *hostname, char *port)
{
int clientfd;
struct addrinfo hints, *hostaddresses = NULL;

/* Find out the server's IP address and port */
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
if (getaddrinfo(hostname, port, &hints, &hostaddresses) != 0)
return -1; /* Caller must generate error message */

}

/* We take advantage of the fact that AF_* and PF_* are identical */
clientfd = socket(hostaddresses->ai_family, hostaddresses->ai_socktype,

hostaddresses->ai_protocol);
if (clientfd == -1)
return -1; /* check errno for cause of error */

/* Establish a connection with the server */
if (connect(clientfd, hostaddresses->ai_addr, hostaddresses->ai_addrlen) == -1)
return -1; /* Caller must generate error message */

freeaddrinfo(hostaddresses);
return clientfd;

}

This function opens a
connection from client to
server at hostname:port
More details follow….

freeaddrinfo needed here too (lack of space on slide)

– 56 – CS 105

Echo Client: open_clientfd
(getaddrinfo)
Echo Client: open_clientfd
(getaddrinfo)

memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
if (getaddrinfo(hostname, port, &hints, &hostaddresses) != 0)

... (more)

getaddrinfo finds out about an Internet host

✁ AI_ADDRCONFIG: only give IPv6 address if our machine can talk
IPv6; likewise for IPv4

✁ AI_V4MAPPED: translate IPv6 to IPv4 when needed

✁ AF_INET6: prefer IPv6 to IPv4

✁ SOCK_STREAM: selects a reliable byte-stream connection

– 57 – CS 105

Echo Client: open_clientfd (socket)Echo Client: open_clientfd (socket)

int clientfd; /* socket descriptor */

clientfd = socket(hostaddresses->ai_family, hostaddresses->ai_socktype,
hostaddresses->ai_protocol);

... (more)

socket creates socket descriptor on client

✁ All details provided by getaddrinfo

✁ Possibility of multiple addresses & address types for host (serious code
must loop & try socket/connect sequence for all)

– 58 – CS 105

Echo Client: open_clientfd (connect)Echo Client: open_clientfd (connect)

Finally, client creates connection with server

✁ Client process suspends (blocks) until connection is created

✁ After resuming, client is ready to begin exchanging messages
with server via Unix I/O calls on descriptor sockfd

✁ hostaddresses is linked list, must be freed

� Including on error returns (not shown, for brevity)

int clientfd; /* socket descriptor */
...
/* Establish a connection with the server */
if (connect(clientfd, hostaddresses->ai_addr, hostaddresses->ai_addrlen) == -1) {

freeaddrinfo(hostaddresses);
return -1;

}
freeaddrinfo(hostaddresses);

– 59 – CS 105

Echo Server: Main RoutineEcho Server: Main Routine
int main(int argc, char **argv) {

int listenfd, connfd, error;
socklen_t clientlen;
char * port;
SA clientaddr;
char hostname[NI_MAXHOST], hostaddr[NI_MAXHOST];

listenfd = open_listenfd(argv[1]);
if (listenfd < 0)

exit(1);
while (1) {

clientlen = sizeof clientaddr;
connfd = accept(listenfd, (struct sockaddr *)&clientaddr, &clientlen);
if (connfd == -1)

continue; /* Needs error message (omitted for space) */
error = getnameinfo((struct sockaddr*)&clientaddr, clientlen, hostname,

sizeof hostname, NULL, 0, 0);
if (error != 0)
continue; /* Needs error message (omitted for space) */

getnameinfo((struct sockaddr*)&clientaddr, clientlen, hostaddr, sizeof hostaddr,
NULL, 0, NI_NUMERICHOST);

printf("server connected to %s (%s)\n", hostname, hostaddr);
echo(connfd);
close(connfd);

}
}

This program repeatedly
waits for connections, then
calls echo(). Details will
follow after we look at
open_listenfd()…

– 60 – CS 105

int open_listenfd(char *port)
{

int listenfd, optval = 1, error;
struct addrinfo hints;
struct addrinfo *hostaddresses = NULL;

/* Find out the server's IP address and port */
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED | AI_PASSIVE;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
error = getaddrinfo(NULL, port, &hints, &hostaddresses);
if (error != 0)

return -1;
if ((listenfd = socket(hostaddresses->ai_family, hostaddresses->ai_socktype, hostaddresses->ai_protocol)) == -1)

return -1; /* Also needs freeaddrinfo but that won’t fit on this slide */
/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, (const void *)&optval , sizeof optval) == -1) {

freeaddrinfo(hostaddresses);
return -1;

}
/* Listenfd will be an endpoint for all requests to port */
if (bind(listenfd, hostaddresses->ai_addr, hostaddresses->ai_addrlen) == -1)

return -1; /* Also needs freeaddrinfo but that won’t fit on this slide */
/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTEN_MAX) == -1)

return -1; /* Also needs freeaddrinfo but that won’t fit on this slide */
freeaddrinfo(hostaddresses);
return listenfd;

}

Echo Server: open_listenfdEcho Server: open_listenfd
This function opens a file
descriptor on which server
can listen for incoming
connections. Details follow…

– 61 – CS 105

Echo Server: open_listenfd
(getaddrinfo)
Echo Server: open_listenfd
(getaddrinfo)
Here, getaddrinfo sets up to create generic “port”

✁ Most options same as for open_clientfd

✁ AI_PASSIVE: allow any host to connect to us (because we’re a server)

✁ First argument to getaddrinfo is NULL because we won’t be connecting to a
specific host

memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED | AI_PASSIVE;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
error = getaddrinfo(NULL, port, &hints, &hostaddresses);

– 62 – CS 105

Echo Server: open_listenfd
(socket)
Echo Server: open_listenfd
(socket)
socket creates socket descriptor on the server

✁ All important parameters provided by getaddrinfo

✁ Saves us from worrying about IPv4 vs. IPv6

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
listenfd = socket(hostaddresses->ai_family,

hostaddresses->ai_socktype, hostaddresses->ai_protocol);
if (listenfd == -1)

return -1;

– 63 – CS 105

Echo Server: open_listenfd
(setsockopt)
Echo Server: open_listenfd
(setsockopt)
The socket can be given some attributes:

Handy trick that allows us to rerun the server immediately after we kill it

✁ Otherwise we would have to wait about 15 seconds

✁ Eliminates “Address already in use” error from bind()

Strongly suggest you do this for all your servers to simplify debugging

In general, optval is value to set option to (several choices available)

/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval, sizeof optval) == -1) {
freeaddrinfo(hostaddresses);
return -1;

}

– 64 – CS 105

Echo Server: open_listenfd (bind)Echo Server: open_listenfd (bind)

bind associates socket with socket address we just created

Again, important parameters come from getaddrinfo

int listenfd; /* listening socket */

...
/* listenfd will be an endpoint for all requests to port

on any IP address for this host */
if (bind(listenfd, hostaddresses->ai_addr, hostaddresses->ai_addrlen) == -1) {

freeaddrinfo(hostaddresses);
return -1;

}

– 65 – CS 105

Echo Server: open_listenfd
(listen)
Echo Server: open_listenfd
(listen)
listen indicates that this socket will accept connection (connect)

requests from clients

We’re finally ready to enter main server loop that accepts and processes
client connection requests

int listenfd; /* listening socket */

...
/* Make it a listening socket ready to accept connection requests */

if (listen(listenfd, LISTEN_MAX) == -1) {
freeaddrinfo(hostaddresses);
return -1;

}
freeaddrinfo(hostaddresses);
return listenfd;

}

– 66 – CS 105

Echo Server: Main LoopEcho Server: Main Loop

Server loops endlessly, waiting for connection requests, then reading
input from client and echoing it back to client

main() {

/* create and configure the listening socket */

while(1) {
/* accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* close(): close the connection */

}
}

– 67 – CS 105

accept() blocks waiting for connection request

accept returns connected descriptor (connfd) with same properties
as listening descriptor (listenfd)

✁ Returns when connection between client and server is created and ready for
I/O transfers

✁ All I/O with client will be done via connected socket

accept also fills in client’s IP address (clientaddr and clientlen)

Echo Server: acceptEcho Server: accept

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
SA clientaddr;
socklen_t clientlen;

clientlen = sizeof(clientaddr);
connfd = accept(listenfd, (struct sockaddr *)&clientaddr, &clientlen);

SA is union big enough to hold IPv6 addresses

– 68 – CS 105

Echo Server: Identifying ClientEcho Server: Identifying Client

Server can determine domain name and IP address of client

char hostname[NI_MAXHOST], hostaddr[NI_MAXHOST];
...

error = getnameinfo((struct sockaddr*)&clientaddr, clientlen,
hostname, sizeof hostname, NULL, 0, 0);

if (error != 0) {
close(connfd);
continue;

}
getnameinfo((struct sockaddr*)&clientaddr, clientlen,

hostaddr, sizeof hostaddr, NULL, 0, NI_NUMERICHOST);
printf("server connected to %s (%s)\n", hostname, hostaddr);

– 69 – CS 105

Echo Server: echoEcho Server: echo

Server uses Unix I/O to read and echo text lines until EOF (end-of-file) is
encountered

✁ EOF notification caused by client calling close(clientfd)

✁ IMPORTANT: EOF is a condition, not a particular data byte

void echo(int connfd)
{

size_t n;
char buf[MAXLINE];

while((n = read(connfd, buf, sizeof buf)) > 0) {
printf("server received %d bytes\n", n);
write(connfd, buf, n);

}
}

– 70 – CS 105

Testing Servers Using telnetTesting Servers Using telnet

The telnet program is invaluable for testing servers that transmit ASCII
strings over Internet connections

✁ Our simple echo server

✁ Web servers

✁ Mail servers

Usage:

✁ unix> telnet host portnumber

✁ Creates connection with server running on host and listening on port portnumber

– 71 – CS 105

Testing Echo Server With telnetTesting Echo Server With telnet
mallet> ./echoserver 5000

server connected to bow.cs.hmc.edu (::ffff:134.173.42.60)
server received 5 bytes
server received 8 bytes

bow> telnet mallet 5000
Trying 134.173.42.59...
Connected to mallet-.
Escape character is '^]'.
123
123
456789
456789
^]
telnet> quit
Connection closed.
bow>

– 72 – CS 105

Running Echo Client and ServerRunning Echo Client and Server

mallet> echoserver 5000

server connected to bow.cs.hmc.edu (::ffff:134.173.42.60)
server received 4 bytes
server connected to bow.cs.hmc.edu (::ffff:134.173.42.60)
server received 7 bytes
...

bow> echoclient mallet 5000

123
123
bow> echoclient mallet 5000
456789
456789
bow>

– 73 – CS 105

One More Important FunctionOne More Important Function

Real servers often want to handle multiple clients

Problem: you have 3 clients. Only B wants service. You can’t really write
serve(A); serve(B); serve(C) because B must wait for A to ask
for service

Solution A: One thread or subprocess per client

Solution B: select system call

✁ Accepts set of file descriptors you’re interested in

✁ Tells you which ones have input waiting or are ready for output

✁ Then you can read from or write to only the active ones

✁ For more info, see man 2 select and Section 12.2 in text

– 74 – CS 105

For More InformationFor More Information

W. Richard Stevens, “Unix Network Programming: Networking APIs:
Sockets and XTI”, Volume 1, Second Edition, Prentice Hall, 1998

✁ THE network programming bible

Complete versions of the echo client and server (for IPv4 only) are
developed in the text

✁ Fully general IPv4/IPv6 versions (from these slides) are available from class web
page

