
CS 105
Lab 1: Manipulating Bits

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers and
floating point numbers. You’ll do this by solving a series of programming “puzzles.” Many of these puzzles
are quite artificial, but you’ll find yourself thinking much more about bits in working your way through
them.

2 Logistics

You will work on a team of two people in solving the problems for this assignment. The only “hand-in”
will be electronic; see Section 7 for instructions on how to submit. Any clarifications and revisions to the
assignment will be posted on the course Web page. We strongly recommend that you and your partner
brainstorm before coding. Be sure to read this entire writeup before you begin.

3 About Working on Wilkes

All of the labs in CS 105 must be done on Wilkes, the department machine that has been specifically set
up for this course. To run programs on Wilkes, you must ssh to access the machine and work from the
command line.

3.1 Getting and Using ssh

If you are working on one of the lab Macs, if you have a Mac of your own, or if you have a Linux box, ssh
should be preinstalled. In that case you merely need to type “ssh username@wilkes.cs.hmc.edu” into
a terminal (command-line) window, where username is your Knuth/Wilkes login ID (usually first initial and
last name). You will be prompted for your password and, after you type it, you will get a normal Linux
command prompt.

If you are running Windows 10, a search for “Windows ssh” will lead you to this Web page, which will
give you instructions on how to make ssh work for you. If you are running an earlier version of Windows,
search for “putty ssh” to find downloads (from www.putty.org) and instructions.

1

https://www.pugetsystems.com/labs/hpc/How-To-Use-SSH-Client-and-Server-on-Windows-10-1470/
www.putty.org


3.1.1 Editing Files

If you are logged into a lab Mac as yourself (not the guest account), you can edit directly on that machine
using whatever editor you prefer, and your changes will show up on Wilkes.

If you prefer a text-based editor that is available on Wilkes, such as emacs, you can simply invoke it from
the Wilkes command line, regardless of how you got to Wilkes.

If you are running on a machine of your own, life is slightly more complex. A good option for Linux users
is to use sshfs to make things appear in a directory on your local machine; sshfs is also available on Macs.
In that case, you will have your choice of editor.

On all platforms, another sensible option is to use Visual Studio Code (vscode) as your editor. If you do,
there is a plugin that will allow you to use Visual Studio Code locally and have the changes show up on
Wilkes.

4 Lab Setup and Overview

The materials for the bits lab are in a tar file on the course webpage for Lab 1. Be sure to first follow the
directions for getting set up on the CS department server wilkes if you haven’t yet already.

Then create a (protected) directory in which you plan to work. Working on Wilkes, change into that
directory and type either “wget link” or “curl link”, where link is the link to the tar file (right-click or
control-click on the link on the lab Web page, choose “Copy link location”, “Copy link address”, “Copy
link”, or just “Copy”, depending on your browser, and then paste the link into your terminal window). That
will download bits-handout.tar into your directory. Then give the command

unix> tar xvf bits-handout.tar

(Don’t type the “unix>” part; that represents the command prompt.) This will cause a number of files to
be unpacked in the directory. The only file you will be modifying and turning in is bits.c.

The bits.c file contains a skeleton for each of the 14 programming puzzles. Your assignment is to
complete each function skeleton using only straightline code for the integer puzzles (i.e., no loops or con-
ditionals) and a limited number of C arithmetic and logical operators. Specifically, you are only allowed to
use the following eight operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than
8 bits. In other words, all constants must fall in the decimal range [0, 255]. See the comments inbits.c
for detailed rules and a discussion of the desired coding style.

BE SURE TO PUT YOUR NAMES AND YOUR KNUTH LOGIN IDS IN THE COMMENTS AT
THE TOP OF BITS.C!

2

https://www.cs.hmc.edu/~geoff/cs105/sshfs.html
https://docs.google.com/document/d/e/2PACX-1vR8pPATUkEpGLlxROq8iy49n_mvLKbW1h2upMi8WRD2NMLlX-dSwQBEud-x8iVFKCpK97uYIDWZjJ6j/pub


5 The Puzzles

This section describes the puzzles that you will be solving in bits.c. There are two sets of puzzles:
(1) bit manipulations and (2) two’s complement arithmetic.

5.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function. See the notes below as well as comments
in bits.c for more details on the desired behavior of the functions.

Name Description Rating Max Ops
bitXor(x,y) ˆ using only & and ˜ 1 14
isNotEqual(x,y) x != y? 2 6
getByte(x,n) Extract byte n from x 2 6
copyLSB(x) Set all bits to least significant bit of x 2 5
logicalShift(x,n) Logical right shift x by n 3 20
bitCount(x) Count number of 1’s in x 4 40
bang(x) Compute !x without using ! operator 4 12
leastBitPos(x) Mark least significant 1 bit 2 6

Table 1: Bit-Level Manipulation Functions.

• Function bitXor should duplicate the behavior of the bit operation ˆ, using only the operations &
and ˜.

• Function isNotEqual compares x to y for inequality. As with all predicate operations, it should
return 1 if the tested condition holds and 0 otherwise.

• Function getByte extracts a byte from a word. The bytes within a word are ordered from 0 (least
significant) to 3 (most significant).

• Function copyLSB replicates a copy of the least significant bit in all 32 bits of the result.

• Function logicalShift performs logical right shifts. You may assume the shift amount n satisfies
0 ≤ n ≤ 31.

• Function bitCount returns a count of the number of 1’s in the argument.

• Function bang computes logical negation without using the ! operator.

• Function leastBitPos generates a mask consisting of a single bit marking the position of the least
significant one bit in the argument. If the argument equals 0, it returns 0.

3



5.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers. Again,
refer to the notes below and the comments in bits.c.

Name Description Rating Max Ops
tmax(void) largest two’s complement integer 1 4
isNonNegative(x) x >= 0? 3 6
isGreater(x,y) x > y? 3 24
divpwr2(x,n) x/(1<<n) 2 15
abs(x) absolute value 4 10
addOK(x,y) Does x+y overflow? 3 20

Table 2: Arithmetic Functions

• Function tmax returns the largest integer.

• Function isNonNegative determines whether x is less than or equal to 0.

• Function isGreater determines whether x is greater than y.

• Function divpwr2 divides its first argument by 2n, where n is the second argument. You may
assume that 0 ≤ n ≤ 30. It must round toward zero.

• Function abs is equivalent to the expression x<0?-x:x, giving the absolute value of x for all values
other than TMin .

• Function addOK determines whether its two arguments can be added together without overflow.

4



6 Evaluation and Autograding

This section describes how your work will be evaluated. Note that included in your lab materials are the
same autograding programs that will be used to grade your submission.

Evaluation

Your score will be computed out of a maximum of 69 points:

36 Correctness points.

28 Performance points.

5 Style points.

Correctness points. The 14 puzzles you must solve have been given a difficulty rating between 1 and 4, such
that their weighted sum totals to 36. We will evaluate your functions using the btest program, which is
described in the next subsection. You will get full credit for a puzzle if it passes all of the tests performed
by btest, and no credit otherwise.

Performance points. Our main concern at this point in the course is that you can get the right answer.
However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you are allowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each correct function that satisfies the operator limit.

Style points. Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and
your commenting. Your solutions should be as clean and straightforward as possible. Your comments should
be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handout directory — btest, dlc, and driver.pl —
to help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions in bits.c. To build and
use it, type the following two commands:

unix> make
unix> ./btest

Notice that you must rebuild btest each time you modify your bits.c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can
use the -f flag to instruct btest to test only a single function:

5



unix> ./btest -f bitAnd

You can feed it specific function arguments using the option flags -1, -2, and -3:

unix> ./btest -f bitAnd -1 7 -2 0xf

Check the file README for documentation on running the btest program.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use
to check for compliance with the coding rules for each puzzle. The typical usage is:

unix> ./dlc bits.c

You may need to make dlc executable with this command: chmod +x dlc. Note that the program
runs silently unless it detects a problem, such as an illegal operator, too many operators, or non-
straightline code in the integer puzzles. Running with the -e switch:

unix> ./dlc -e bits.c

causes dlc to print counts of the number of operators used by each function. Type ./dlc -help
for a list of command line options.

• driver.pl: This is a driver program that uses btest and dlc to compute the correctness and
performance points for your solution. It takes no arguments:

unix> ./driver.pl

Your instructors will use driver.pl to evaluate your solution.

7 Handin Instructions

Be sure you’ve run BOTH btest and dlc to check for issues before you submit! Also check that you’ve
included both partners names/logins in the comments at the top of bits.c and that you’ve removed any
extraneous print commands.

From the command line on wilkes in your lab directory type

cs105submit -a 01 bits.c

You should get a response that 1 file has been submitted and that you will get an email confirming your sub-
mission. Note, you can resubmit as often as you want up to the deadline. Only the most recent submission
will be graded. Do not make any submissions after the deadline unless you notify the instructor that you are
using late days.

6



8 Advice and Notes

• Don’t include the <stdio.h> header file in your bits.c file, as it confuses dlc and results in
some non-intuitive error messages. You will still be able to use printf in your bits.c file for
debugging without including the <stdio.h> header, although gcc will print a warning that you
can ignore. Be sure to remove any printf statements before running driver.pl.

• Variable declarations: the dlc program enforces a stricter form of C declarations than is the case
for C/C++ or that is enforced by gcc. In particular, any and all declarations must appear in a block
(what you enclose in curly braces) before any statement that is not a declaration. For example, it will
complain about the following code:

int foo(int x)
{

int a = x;
a *= 3; /* A statement that is not a declaration */
int b = a; /* ERROR: Declaration of b not allowed here */

}

• Be sure that your code compiles and runs correctly on wilkes!

7


	Introduction
	Logistics
	About Working on Wilkes
	Getting and Using ssh
	Editing Files


	Lab Setup and Overview
	The Puzzles
	Bit Manipulations
	Two's Complement Arithmetic

	Evaluation and Autograding
	Handin Instructions
	Advice and Notes

