
CS 137: File Systems
Dealing With the Block Interface

1 / 24



Basics of Block I/O

The Kernel “API”

Request is described by struct bio:
bi_sector Starting sector, 512-byte unit
bi_bdev (Block) device to do I/O on
bi_rw Read or write

bi_size Size in bytes (not sectors!)
bi_iovec Complex description of where data is in memory

Despite size in bytes, writes must be integral number of hardware blocks

In practice, reads are always integral blocks, too

2 / 24



Basics of Block I/O

The Unix API

FUSE clients use Unix I/O:
read(fd, buf, n) Read n bytes from current position of file descriptor fd into

memory at address buf
write(fd, buf, n) Write n bytes to current position of file descriptor fd out of

memory at buf
lseek(fd, pos, SEEK_SET) Set current position of file descriptor fd to pos (bytes)

Important: fd can be connected to a Unix file or an actual device. We will normally use
files to represent devices.

3 / 24



Basics of Block I/O

Simulating the Kernel

Best practice is to wrap the Unix API:
read_block(block, buf Performs lseek to correct byte offset, then reads
write_block(block, buf Performs lseek to correct byte offset, then writes

Code should never assume anything about current position in file.

Up to you whether wrappers accept a “device” identifier (the fd) or it’s hard-wired.

4 / 24



Sample Code Overview

Overview

FUSE client code typically has three parts:
1. Declarations of constants and data structures

I Latter are critically important!

2. Code to implement operations
3. main function and initializer to get stuff started

Biggest problem for novices is dealing with block I/O interface

5 / 24



Sample Code Overview

The Stupid Filesystem

I Serves as example of how things are done
I Limit of 100 files & directories
I Small limit on file size
I Inflexible on-disk layout
I No reuse of deleted space!

6 / 24



Sample Code Overview

Stupid Filesystem Layout

1 101 2010

File 1 (root dir) File 2SB File 3

I Superblock contains meta information
I Fixed-size files immediately follow superblock
I Can find everything by indexing

7 / 24



Sample Code Preliminary Declarations

Constants, Types, and Globals

#define STUPID_MAGIC_BIG_ENDIAN 0x7374757069642121L
#define STUPID_MAGIC_LITTLE_ENDIAN 0x2121646970757473L

#define BLOCK_SIZE 4096
#define BLOCKS_PER_FILE 100 /* Maximum file size, in blocks */
#define MAX_FILES 100 /* Maximum number of files supported */
#define DISK_SIZE ((1 + BLOCKS_PER_FILE * MAX_FILES) * BLOCK_SIZE)

typedef size_t block_t; /* Block-address type */

static int backing_file_fd;
/* Fd for all access to backing file */

8 / 24



Sample Code Preliminary Declarations

Superblock

struct sblock {
unsigned long magic; /* Magic # identifying filesys */
size_t total_blocks; /* Total blocks (disk size) */
size_t block_size; /* Size of each block */
size_t blocks_per_file; /* How big each file is */
block_t files_start; /* First block of first file */
size_t next_file_no; /* Next file number to use */

};

static union {
struct sblock s;
char pad[BLOCK_SIZE];

}
superblock;

9 / 24



Sample Code Preliminary Declarations

Directory Entry

#define DIRENT_LENGTH 64
#define NAME_LENGTH (DIRENT_LENGTH - 1 - 1 - 2 * sizeof (size_t))

typedef struct {
size_t file_no; /* File’s # in the system */
size_t size; /* Size of the file */
unsigned char type; /* Entry type (see below) */
unsigned char namelen; /* Length of name */
char name[NAME_LENGTH]; /* File name */

}
stupid_dirent;

#define DIR_SIZE (BLOCKS_PER_FILE * BLOCK_SIZE \
/ sizeof (stupid_dirent))

/* Max entries in a directory */

10 / 24



Sample Code Preliminary Declarations

Useful Macros

#define BLOCKS_TO_BYTES(x) ((x) * superblock.s.block_size)
#define BYTES_TO_BLOCKS(x) (((x) + superblock.s.block_size - 1) \

/ superblock.s.block_size)
#define FILE_NO_TO_BLOCK(x) (((x) - 1)*superblock.s.blocks_per_file \

+ superblock.s.files_start)
#define LAST_BLOCK(x) ((x) + superblock.s.blocks_per_file)
#define OFFSET_TO_BLOCK(dirent, x) \

(FILE_NO_TO_BLOCK(dirent->file_no) + (x) \
/ superblock.s.block_size)

#define OFFSET_IN_BLOCK(x) ((x) % superblock.s.block_size)

11 / 24



Sample Code Preliminary Declarations

Global Variables

superblock.s Superblock contents
backing_file_fd File descriptor connected to backing file (or device)

dirbuf 1-block buffer with directory entries
dirblock Block number of current block held in dirblock

12 / 24



Sample Code Helper Functions

Implementing Block I/O

static void read_block(block_t block, void *buf)
{

assert(lseek(backing_file_fd, BLOCKS_TO_BYTES(block), SEEK_SET) \
!= -1);

assert(read(backing_file_fd, buf, superblock.s.block_size)
== superblock.s.block_size);

}

static void write_block(block_t block, const void *buf)
{

assert(lseek(backing_file_fd, BLOCKS_TO_BYTES(block), SEEK_SET) \
!= -1);

assert(write(backing_file_fd, buf, superblock.s.block_size)
== superblock.s.block_size);

}

13 / 24



Sample Code Helper Functions

Directory I/O

static void fetch_dirblock(size_t block)
{

if (dirblock == block)
return; /* Efficiency: no work needed */

dirblock = block;
read_block(dirblock, dirbuf);

}

static void flush_dirblock()
{

write_block(dirblock, dirbuf);
}

14 / 24



Sample Code Initialization

Reading a Superblock

assert(lseek(backing_file_fd, 0, SEEK_SET) != -1);
size = read(backing_file_fd, &superblock, sizeof superblock);
if (size == sizeof superblock

&& superblock.s.magic == STUPID_MAGIC_LITTLE_ENDIAN) {
/* Do any other initialization here */
return NULL;

}

15 / 24



Sample Code Initialization

Initializing an Empty Superblock

memset(&superblock, 0, sizeof superblock);
superblock.s.magic = STUPID_MAGIC_LITTLE_ENDIAN;
superblock.s.total_blocks = DISK_SIZE / BLOCK_SIZE;
superblock.s.block_size = BLOCK_SIZE;
superblock.s.blocks_per_file = BLOCKS_PER_FILE;

/*
* The root directory always starts just past the superblock,

* and has file number 1. So the next available file number is 2.

*/
superblock.s.files_start = \

sizeof(superblock) / superblock.s.block_size;
superblock.s.next_file_no = 2;
/* Not written here */

16 / 24



Sample Code Initialization

Initializing the Root Directory

dirbuf = (stupid_dirent*)calloc(superblock.s.block_size, 1);
dirend = (stupid_dirent*)((char *)dirbuf + superblock.s.block_size);

dirblock = superblock.s.files_start;
dirbuf[0].type = TYPE_DIR;
dirbuf[0].file_no = 1;
dirbuf[0].size = DIR_SIZE * DIRENT_LENGTH;
dirbuf[0].namelen = 1;
memcpy(dirbuf[0].name, ".", 1);

dirbuf[1].type = TYPE_DIR;
dirbuf[1].file_no = 1;
dirbuf[1].size = DIR_SIZE * DIRENT_LENGTH;
dirbuf[1].namelen = 2;
memcpy(dirbuf[1].name, "..", 2);
write_block(superblock.s.files_start, dirbuf);

17 / 24



Sample Code Initialization

A Tricky Point: Extending the Backing File

ftruncate(backing_file_fd, DISK_SIZE);

/*
* Finally, write the superblock to disk. We write it last so

* that if we crash, the disk won’t appear valid.

*/
write_block(0, &superblock);

18 / 24



Sample Code File System Functions

Directory Lookup (Partial Code)

static stupid_dirent* lookup_component(block_t block,
const char *start, const char *end)

{
stupid_dirent* dirent;
size_t len = end - start;
block_t last_block;
if (len > NAME_LENGTH)

len = NAME_LENGTH;
for (last_block = LAST_BLOCK(block); block < last_block; block++) {

fetch_dirblock(block); /* Reads into dirbuf */
for (dirent = dirbuf; dirent < dirend; dirent++) {

if (dirent->type != TYPE_EMPTY && len == dirent->namelen
&& memcmp(dirent->name, start, len) == 0)

return dirent;
}

}
return NULL; 19 / 24



Sample Code File System Functions

Handling Functions You Don’t Want to Write

static int fuse_stupid_rename(const char *from, const char *to)
{

/*
* Getting rename right is hard; you may need to remove the

* destination, * and it has to support cross-directory renames.

* I’m just going to prohibit it.

*/
return -ENOSYS;

}

20 / 24



Sample Code File System Functions

Opening a File

static int fuse_stupid_open(const char *path, struct fuse_file_info *fi)
{

stupid_dirent* dirent;

dirent = find_dirent(path, 0);
if (dirent == NULL)

return -ENOENT;
if (dirent->type != TYPE_FILE)

return -EACCES;
/*
* Open succeeds if the file exists.

*/
return 0;

}

21 / 24



Sample Code File System Functions

Reading Data (Setup)

static int fuse_stupid_read(const char *path, char *buf, size_t size,
off_t offset, struct fuse_file_info *fi)

{
block_t block;
char blockbuf[BLOCK_SIZE];
size_t bytes_read;
stupid_dirent* dirent;
size_t read_size;

dirent = find_dirent(path, 0);
if (dirent == NULL)

return -ENOENT;
if (dirent->type != TYPE_FILE)

return -EACCES;
read_size = dirent->size; /* Amount to read (max is file size) */
if (offset >= read_size)

return 0;
if (offset + size > read_size)

size = read_size - offset; /* Don’t read past EOF */

22 / 24



Sample Code File System Functions

Reading Data (The Loop)

block = OFFSET_TO_BLOCK(dirent, offset);
offset = OFFSET_IN_BLOCK(offset);

for (bytes_read = 0; size > 0; block++, offset = 0) {
read_size = superblock.s.block_size - offset;
if (read_size > size)

read_size = size;
read_block(block, blockbuf); /* Read in full-block units */
memcpy(buf, blockbuf, read_size);
bytes_read += read_size;
buf += read_size;
size -= read_size;

}

return bytes_read;

23 / 24



Sample Code Final Thoughts

What About the Rest?

I This is quite a bit of code
I But there’s more to a real filesystem
I Important lesson: It’s up to you to divide user requests up into single-block accesses
I On-disk data is raw bytes; you must typecast to what you want
I Also must make sure you use block-size units
I void * pointers are helpful

24 / 24


	Basics of Block I/O
	Sample Code
	Overview
	Preliminary Declarations
	Helper Functions
	Initialization
	File System Functions
	Final Thoughts


