
CS 137: File Systems
Dealing With the Block Interface

1 / 24



Basics of Block I/O

The Kernel “API”

Request is described by struct bio:
bi_sector Starting sector, 512-byte unit
bi_bdev (Block) device to do I/O on
bi_rw Read or write

bi_size Size in bytes (not sectors!)
bi_iovec Complex description of where data is in memory

Despite size in bytes, writes must be integral number of hardware blocks

In practice, reads are always integral blocks, too

Kernel interface is asynchronous: must submit request and return; different function will
be called later upon completion

2 / 24



Basics of Block I/O

The Unix API

FUSE clients use Unix I/O:
read(fd, buf, n) Read n bytes from current position of file descriptor fd into

memory at address buf
write(fd, buf, n) Write n bytes to current position of file descriptor fd out of

memory at buf
lseek(fd, pos, SEEK_SET) Set current position of file descriptor fd to pos (bytes)

Important: fd can be connected to a Unix file or an actual device. We will normally use
files to represent devices.

3 / 24



Basics of Block I/O

Simulating the Kernel

Best practice is to wrap the Unix API:
read_block([fd,] block, buf) Performs lseek to correct byte offset, then reads
write_block([fd, ]block, buf) Performs lseek to correct byte offset, then

writes

Code should never assume anything about current position in file.

Can get fd from global variable or have it be a parameter.

Up to you whether wrappers accept a “device” identifier (the fd) or it’s hard-wired.

4 / 24



Sample Code Overview

Overview

FUSE user-level code typically has three parts:
1. Declarations of constants and data structures

I Latter are critically important!

2. Code to implement operations
3. main function and initializer to get stuff started

Biggest problem for novices is dealing with block I/O interface

5 / 24



Sample Code Overview

The Stupid Filesystem

I Serves as example of how things are done
I Limit of 100 files & directories
I Small limit on file size
I Inflexible on-disk layout
I No reuse of deleted space!

6 / 24



Sample Code Overview

Stupid Filesystem Layout

1 101 2010

File 1 (root dir) File 2SB File 3

I Superblock contains meta information
I Fixed-size files immediately follow superblock
I Can find everything by indexing

7 / 24



Sample Code Preliminary Declarations

Constants, Types, and Globals

#define STUPID_MAGIC_BIG_ENDIAN 0x7374757069642121L
#define STUPID_MAGIC_LITTLE_ENDIAN 0x2121646970757473L

#define BLOCK_SIZE 4096
#define BLOCKS_PER_FILE 100 /* Maximum file size, in blocks */
#define MAX_FILES 100 /* Maximum number of files supported */
#define DISK_SIZE ((1 + BLOCKS_PER_FILE * MAX_FILES) * BLOCK_SIZE)

/* Size of "disk", in bytes */

typedef size_t block_t; /* Block-address type */

static int backing_file_fd;
/* Fd for all access to backing file */
/* ..(disk) */

8 / 24



Sample Code Preliminary Declarations

Superblock

struct sblock {
unsigned long magic; /* Magic # identifying filesys */
size_t total_blocks; /* Total blocks (disk size) */
size_t block_size; /* Size of each block */
size_t blocks_per_file; /* How big each file is */
block_t files_start; /* First block of first file */
size_t next_file_no; /* Next file number to use */

};

static union {
struct sblock s;
char pad[BLOCK_SIZE];

}
superblock;

9 / 24



Sample Code Preliminary Declarations

Directory Entry

#define DIRENT_LENGTH 64
#define NAME_LENGTH (DIRENT_LENGTH - 1 - 1 - 2 * sizeof(size_t))

typedef struct {
size_t file_no; /* File’s # in the system */
size_t size; /* Size of the file */
unsigned char type; /* Entry type (see below) */
unsigned char namelen; /* Length of name */
char name[NAME_LENGTH]; /* File name */

}
stupid_dirent;

#define DIR_SIZE (BLOCKS_PER_FILE * BLOCK_SIZE \
/ sizeof(stupid_dirent))

/* Max entries in a directory */

10 / 24



Sample Code Preliminary Declarations

Global Variables

superblock.s Superblock contents
backing_file_fd File descriptor connected to backing file (or device)

dirbuf 1-block buffer with directory entries
dirblock Block number of current block held in dirblock

11 / 24



Sample Code Preliminary Declarations

Useful Macros

#define BLOCKS_TO_BYTES(x) ((x) * superblock.s.block_size)
#define BYTES_TO_BLOCKS(x) (((x) + superblock.s.block_size - 1) \

/ superblock.s.block_size)
#define FILE_NO_TO_BLOCK(x) (((x) - 1)*superblock.s.blocks_per_file \

+ superblock.s.files_start)
#define LAST_BLOCK(x) ((x) + superblock.s.blocks_per_file)
#define OFFSET_TO_BLOCK(dirent, x) \

(FILE_NO_TO_BLOCK(dirent->file_no) + (x) \
/ superblock.s.block_size)

#define OFFSET_IN_BLOCK(x) ((x) % superblock.s.block_size)

12 / 24



Sample Code Helper Functions

Implementing Block I/O

static void read_block(block_t block, void *buf)
{

assert(lseek(backing_file_fd, BLOCKS_TO_BYTES(block), SEEK_SET) \
!= -1);

assert(read(backing_file_fd, buf, superblock.s.block_size)
== superblock.s.block_size);

}

static void write_block(block_t block, const void *buf)
{

assert(lseek(backing_file_fd, BLOCKS_TO_BYTES(block), SEEK_SET) \
!= -1);

assert(write(backing_file_fd, buf, superblock.s.block_size)
== superblock.s.block_size);

}

13 / 24



Sample Code Helper Functions

Directory I/O

static void fetch_dirblock(size_t block)
{

if (dirblock == block)
return; /* Efficiency: no work needed */

dirblock = block;
read_block(dirblock, dirbuf);

}

static void flush_dirblock()
{

write_block(dirblock, dirbuf);
}

14 / 24



Sample Code Initialization

Reading a Superblock

assert(lseek(backing_file_fd, 0, SEEK_SET) != -1);
size = read(backing_file_fd, &superblock, sizeof superblock);
if (size == sizeof superblock

&& superblock.s.magic == STUPID_MAGIC_LITTLE_ENDIAN) {
/* Do any other initialization here */
return NULL;

}

15 / 24



Sample Code Initialization

Initializing an Empty Superblock

memset(&superblock, 0, sizeof superblock);
superblock.s.magic = STUPID_MAGIC_LITTLE_ENDIAN;
superblock.s.total_blocks = DISK_SIZE / BLOCK_SIZE;
superblock.s.block_size = BLOCK_SIZE;
superblock.s.blocks_per_file = BLOCKS_PER_FILE;

/*
* The root directory always starts just past the superblock,

* and has file number 1. So the next available file number is 2.

*/
superblock.s.files_start = \

sizeof superblock / superblock.s.block_size;
superblock.s.next_file_no = 2;
/* Not written here */

16 / 24



Sample Code Initialization

Initializing the Root Directory

dirbuf = (stupid_dirent*)calloc(superblock.s.block_size, 1);
dirend = (stupid_dirent*)((char *)dirbuf + superblock.s.block_size);

dirblock = superblock.s.files_start;
dirbuf[0].type = TYPE_DIR;
dirbuf[0].file_no = 1;
dirbuf[0].size = DIR_SIZE * DIRENT_LENGTH;
dirbuf[0].namelen = 1;
memcpy(dirbuf[0].name, ".", 1);

dirbuf[1].type = TYPE_DIR;
dirbuf[1].file_no = 1;
dirbuf[1].size = DIR_SIZE * DIRENT_LENGTH;
dirbuf[1].namelen = 2;
memcpy(dirbuf[1].name, "..", 2);
flush_dirblock();
write_block(superblock.s.files_start, dirbuf); 17 / 24



Sample Code Initialization

A Tricky Point: Extending the Backing File

ftruncate(backing_file_fd, DISK_SIZE);

/*
* Finally, write the superblock to disk. We write it last so

* that if we crash, the disk won’t appear valid.

*/
write_block(0, &superblock);

18 / 24



Sample Code File System Functions

Directory Lookup (Partial Code)

static stupid_dirent* lookup_component(block_t block,
const char *start, const char *end)

{
stupid_dirent* dirent;
size_t len = end - start;
block_t last_block;
if (len > NAME_LENGTH)

len = NAME_LENGTH;
for (last_block = LAST_BLOCK(block); block < last_block; block++) {

fetch_dirblock(block); /* Reads into dirbuf */
for (dirent = dirbuf; dirent < dirend; dirent++) {

if (dirent->type != TYPE_EMPTY && len == dirent->namelen
&& memcmp(dirent->name, start, len) == 0)

return dirent;
}

}
return NULL; 19 / 24



Sample Code File System Functions

Handling Functions You Don’t Want to Write

static int fuse_stupid_rename(const char *from, const char *to)
{

/*
* Getting rename right is hard; you may need to remove the

* destination, and it has to support cross-directory renames.

* I’m just going to prohibit it.

*/
return -ENOSYS;

}

20 / 24



Sample Code File System Functions

Opening a File

static int fuse_stupid_open(const char *path, struct fuse_file_info *fi)
{

stupid_dirent* dirent;

dirent = find_dirent(path, 0);
if (dirent == NULL)

return -ENOENT;
if (dirent->type != TYPE_FILE)

return -EACCES;
/*
* Open succeeds if the file exists.

*/
return 0;

}

21 / 24



Sample Code File System Functions

Reading Data (Setup)

static int fuse_stupid_read(const char *path, char *buf, size_t size,
off_t offset, struct fuse_file_info *fi)

{
block_t block;
char blockbuf[BLOCK_SIZE];
size_t bytes_read, read_size;
stupid_dirent* dirent;

dirent = find_dirent(path, 0);
if (dirent == NULL) return -ENOENT;
if (dirent->type != TYPE_FILE) return -EACCES;
if (offset >= dirent->size)

return 0;

if (offset + size > dirent->size)
size = dirent->size - offset; /* Don’t read past EOF */

22 / 24



Sample Code File System Functions

Reading Data (The Loop)

block = OFFSET_TO_BLOCK(dirent, offset);
offset = OFFSET_IN_BLOCK(offset);

for (bytes_read = 0; size > 0; block++, offset = 0) {
read_size = superblock.s.block_size - offset;
if (read_size > size)

read_size = size;
read_block(block, blockbuf); /* Read in full-block units */
memcpy(buf, blockbuf, read_size);
bytes_read += read_size;
buf += read_size;
size -= read_size;

}

return bytes_read;

23 / 24



Sample Code Final Thoughts

What About the Rest?

I This is quite a bit of code
I But there’s more to a real filesystem
I Important lesson: It’s up to you to divide user requests up into single-block accesses
I On-disk data is raw bytes; you must typecast to what you want
I Also must make sure you use block-size units
I void * pointers are helpful

24 / 24


	Basics of Block I/O
	Sample Code
	Overview
	Preliminary Declarations
	Helper Functions
	Initialization
	File System Functions
	Final Thoughts


