CS 147: Computer Systems Performance Analysis
Course Introduction
Overview

Class Introduction
 Administrivia
 Projects
 Overview
 Break

Issues in Performance Analysis
 Introduction
 What You Need to Know to Analyze Performance

In Summary
Basic Course Information

- Prerequisites: CS70, Math 35
 - Highly recommend CS 105, 140, etc.
- Web page: www.cs.hmc.edu/~geoff/cs147
- AIM: ProfKuenning
- Office hours on Web page
 - Will be changed in first few weeks of term
The Art of Computer Systems Performance Analysis, by Raj Jain
 - Readings assigned weekly
 - First assignment: Chapters 1-2

You are expected to find and read materials required to perform projects

Recommended: The Visual Display of Quantitative Information, by Edward Tufte
Project - 50%
Midterm - 20%
Homework - 25%
Evaluation of other projects - 5%
Grading criteria may change!
Design and perform evaluation of a real software system
Present plans in class
Present results in class
Final written report
Evaluate others’ projects
Suitable Subjects for Projects

- Operating systems or their components (file systems, I/O subsystems, process handling, etc.)
- Compilers
- Databases
- Real-time applications
- Large application packages (e.g., email, web tools)
- Networks/networking systems
- The Web
Group projects
 - Prefer 2-3 people per group
 - Groups chosen by you

Project topic chosen by the group

All group members must participate in all group activities
Projects

Written Materials for Project

- Project proposal (1-2 pages), due February 20
- Project design (3-6 pages), due Mar 9
- Final report (10+ pages), due May 4
- All due dates are 5 PM
 - E-mail, give to me during class, or slide under my door
In-Class Presentations

- Detailed presentation of project designs (March 5) - 15 minutes per group
- Presentation of results (April 23 & 25) - 30-40 minutes per group
- All group members expected to present
Several criteria:

- Proper design of the experiment
- Care and thoroughness of its execution
- Completeness of analysis
- Quality of data presentation
- Insight gained from experiment

Insight is the most important
Evaluation of Other Groups’ Projects

- Submitted by each student individually
- 1-page critique of each group’s proposed experiment
 - Due Mar 9, 5 PM
- 1-page critique of each group’s results
 - Due May 4, 5 PM
- Graded on basis of insight into strengths and flaws of each project
Homework

- Approximately 5 homework sets worth 5% each
- Assigned Wednesday each of 3rd-7th weeks
- Due Wednesday of the following week
What Will You Learn?

▶ You’ll learn:
 ▶ How to design & perform software experiments
 ▶ How to analyze & present data
 ▶ How to critique others’ experiments and data

▶ But not:
 ▶ Basic systems software principles
 ▶ Systems software modeling
 ▶ Queueing theory
 ▶ Simulation techniques
Class Outline (1)

- Introduction (1\frac{1}{2} classes)
- Review of probability & statistics (3\frac{1}{2} classes)
- Analysis of sample system (1 class)
- Presentation of project designs (1 class)
Class Outline (2)

- Graphical presentation (2 classes)
- System measurement techniques and tools (3 classes)
- Experimental design and analysis (4 classes)
- Design and analysis of sample experiments (1–2 classes)
- Presentation of project results (1–2 classes)
Let’s take a break
Why Do We Care About Performance Analysis?

- Performance almost always key issue in software
 - Especially in system software
- Everyone wants best possible performance
- Cost of achieving performance also key
- Reporting performance necessary in many publication venues
 - Both academic and industry
Performance is key in almost all CS research

A solution that doesn’t perform well isn’t a solution at all

Successful research must prove performance characteristics to a skeptical community
State of Performance Evaluation in the Field

- Generally regarded as poor
- Many systems have little performance data presented
- Many systems are measured by improper criteria
- Many experiments are poorly designed
- Many results are badly or incorrectly presented
- Replication not generally respected
What’s the Result?

- You can’t always trust what you read in a research paper
- Authors may have accidentally or intentionally misled you
 - Overstating performance
 - Hiding problems
 - Not answering the important questions
Mostly ignorance of:
 - Proper methods for measuring performance
 - Statistical analysis
 - Ways to present results

Abetted by reader's ignorance of what questions they should be asking
People are taking performance measurement more seriously
Quality of published experiments is increasing
Yours had better be of high quality, too
 Publishing is tough
 Business competition is tough
 So be at the top of the heap of papers
What Do You Need To Know to Analyze Performance?

- How to select appropriate experiment characteristics
- Proper performance measurement techniques
- Proper statistical techniques
- Proper data presentation techniques
Selecting Appropriate Experiment Characteristics

- Evaluation techniques
- Performance metrics
- Workloads
Evaluation Techniques

- Actual measurement not always best tool
 - Modeling might be better
 - Simulation might be better
- But that’s not what this class is about
- We will discuss when to use those techniques, though
Performance Metrics

- Defined as criteria used to evaluate performance of a system
- Examples:
 - Response time
 - Transactions per second
 - Bandwidth delivered
- Choosing proper metrics is key to really understanding system performance
Workloads

- Defined as requests users make of a system
- If you don’t evaluate with proper workload, you aren’t measuring what real users will experience
- Typical workloads:
 - Types of queries
 - Jobs submitted to an OS
 - Messages sent through a protocol
You need at least two components to measure performance:
1. Load generator to apply workload to system
2. Monitor to find out what happened

Both have to be accurate, controllable, and repeatable
Proper Statistical Techniques

- Most computer performance measurements not purely deterministic
- Most performance evaluations weigh effects of different alternatives
- How to separate meaningless variations from vital data in measurements?
- Requires proper statistical techniques
- We’ll spend a fair amount of time on this issue
Minimizing Your Work

- Unless you design carefully, you’ll measure a lot more than you need to
- A careful design can save you from doing lots of measurements
- Should identify critical factors
- And determine smallest number of experiments that gives “sufficiently” accurate answer
Proper Data Presentation Techniques

▶ You’ve got pertinent, statistically accurate data that describes your system
▶ Now what?
▶ How to present it
 ▶ Honestly
 ▶ Clearly
 ▶ Convincingly
Why Is Performance Analysis Difficult?

- It's an art - it's not mechanical
- Can't just apply a handful of principles and expect good results
- Must understand your system
- Must properly select measurement techniques and tools
- Must be careful and honest
Example

- Suppose you’ve built OS for a special-purpose Internet browsing box
- How well does it perform?
- Indeed, how do you even begin to answer that question?
Starting on an Answer

- What’s the OS supposed to do?
- What demands will be put on it?
- What hardware will it work with, and what are that hardware’s characteristics?
- What performance metrics are most important?
 - Response time?
 - Delivered bandwidth?
 - Something else?