Term Project: Reinforcement learning applied to Othello

GEORGE TUCKER
Othello
What is reinforcement learning?

- After a sequence of actions get a reward
 - Positive or negative

- Temporal credit assignment problem
 - Determine credit for the reward
 - Temporal Difference Methods
 - TD-lambda
 - Q-learning (TD(0))
Contrast to Conventional Strategies

- Most methods use an evaluation function
- Use minimax/alpha-beta search
- Hand-designed feature detectors
 - Evaluation function is a weighted sum

- So why TD learning?
 - Does not need hand coded features
 - Generalization
Temporal Difference Learning

\[
Output = \sum_{k=1}^{H} f\left(\sum_{j=1}^{N} I_{j,k} W^I_j\right) W^O_k
\]

\(N\) is the number of input nodes.

\(H\) is the number of hidden nodes.

\(f()\) is our non-linear function.
Temporal Difference Learning

\[\Delta W_t = \alpha (Y_{t+1} - Y_t) \sum_{k=1}^{t} \lambda^{t-k} \nabla_w Y_k \]

- \(t \) is time (in our case move number).
- \(T \) is the final time (total number of moves).
- \(Y_t \) is the evaluation of the board at time \(t \) when \(t \neq T \).
- \(Y_T \) is the true reward (i.e. win, loss or draw).
- \(\alpha \) is the learning rate.
- \(\nabla_w Y_k \) is the partial derivative of the weights with respect to the output.
- \(d_T \) is the temporal difference.
Key Observation

- If we let

\[e_{ijk}^t = \sum_{n=1}^{t} \lambda^{t-n} \frac{\partial P_k^n}{\partial w_{ij}^n}. \]

at time step \(t \). Then at time step \(t+1 \),

\[e_{ijk}^{t+1} = \lambda e_{ijk}^t + \frac{\partial P_k^{t+1}}{\partial w_{ij}^{t+1}}. \]
If we let $\lambda = 0$, then, we get

$$\Delta W_t = \alpha(Y_{t+1} - Y_t) \nabla_w Y_k$$

- Widrow-Hoff rule
- Makes Y_t closer to Y_{t+1}
Disadvantage

- Requires lots of training
- Self-play
 - Short-term pathologies
 - Randomization
• **Board:** 64 element vector
 - +1 = black
 - 0 = empty
 - -1 = white
 - Corresponds to human representation

• **Network**
 - 64 inputs
 - 30 hidden nodes – Sigmoid activation
 - Single output
 - Goal: predict final game score
Setup

- TD lambda learning
 - Lambda = 0.3
 - Learning rate = 0.005
 - Reward is endgame score

- Move selection
 - Evaluate every legal 1 ply move
 - Choose randomly with exponential weight
Player Handling

- Two Neural Networks
- Board inversion
 - On white’s move, invert board and score
 - Faster and superior learning
Training Data

- **Recall:**
 - Random play
 - Fixed opponent
 - Database play
 - Self-play

- **I focused on:**
 - Database play
 - Self-play
Opponent

- Java Othello
 - www.luthman.nu/Othello/Othello.html
 - Variable levels corresponding to ply depth
- Used as benchmark
- Trained against
Database Training

- **Logistello database**
 - 120,000 games

- **Fast**
 - less than 30 minutes to train on the full set

- **Wins 10% games against a 1 ply opponent**
Self-play

- **Extremely slow improvement**
 - Even after nearly 2,000,000 iterations almost no improvement
- **Only wins 1% of games against 1 ply opponent**
Two Ply Opponent

- Opponent looks ahead one ply and chooses the best move
 - Much slower by a factor of 6 or more
Website

- For source code and reference material
 - www.cs.hmc.edu/~gtucker/othello.html
Conclusions

- Board inversion should definitely be used
- Initially, at least self-play is poor
- Database play significantly improves network
- Asymmetric self-play is far superior to standard self-play
- Playing a fixed opponent may be best

Future Work
- Add in additional feature detectors
- Investigate more advanced depth play