Reinforcement Learning in Board Games

George Tucker
Paper Background

- Reinforcement learning in board games
 - Imran Ghory
 - 2004
- Surveys progress in last decade
- Suggests improvements
- Formalizes key game properties
- Develops a TD-learning game system
Why board games?

- Regarded as a sign of intelligence and learning
 - Chess
- Games as simplified models
 - Battleship
- Existing methods of comparison
 - Rating systems
What is reinforcement learning?

- After a sequence of actions get a reward
 - Positive or negative
- Temporal credit assignment problem
 - Determine credit for the reward
 - Temporal Difference Methods
 - TD-lambda
History

- Basics developed by Arthur Samuel
 - Checkers
- Richard Sutton introduced TD-lambda
- Gerald Tesauro creates TD-Gammon
- Chess and Go
 - Worse than conventional AI
History

- Othello
 - Contradictory results
- Substantial growth since then
- TD-lambda has potential to learn game variants
Conventional Strategies

- Most methods use an evaluation function
- Use minimax/alpha-beta search
- Hand-designed feature detectors
 - Evaluation function is a weighted sum

- So why TD learning?
 - Does not need hand coded features
 - Generalization
Temporal Difference Learning

$$Output = \sum_{k=1}^{H} f\left(\sum_{j=1}^{N} I_{j,k} W_{j}^{I}\right) W_{k}^{O}$$

- N is the number of input nodes.
- H is the number of hidden nodes.
- $f()$ is our non-linear function.
\[
\Delta W_t = \alpha \sum_{k=1}^{t} \lambda^{t-k} \nabla_w Y_k d_t
\]

- \(t\) is time (in our case move number).
- \(T\) is the final time (total number of moves).
- \(Y_t\) is the evaluation of the board at time \(t\) when \(t \neq T\).
- \(Y_T\) is the true reward (i.e. win, loss or draw).
- \(\alpha\) is the learning rate.
- \(\nabla_w Y_k\) is the partial derivative of the weights with respect to the output.
- \(d_T\) is the temporal difference.
Disadvantage

- Requires lots of training
- Self-play
 - Short-term pathologies
 - Randomization
TD Algorithm Variants

- **TD-Leaf**
 - Evaluation function search
- **TD-Directed**
 - Minimax search
- **TD-Mu**
 - Fixed opponent
 - Use evaluation function on opponent’s moves
Current State

- **Many improvements**
 - Sparse and dubious validation
 - Hard to check

- **Tuning weights**
 - Nonlinear combinations
 - Differentiate between effective and ineffective

- **Automated evolution method of feature generation**
 - Turian
Important Game Properties

- **Board Smoothness**
 - Capabilities tied to smoothness
 - Based on the board representation

- **Divergence rate**
 - Measure how a single move changes the board
 - Backgammon and Chess – low to medium
 - Othello – high

- **Forced exploration**

- **State space complexity**
 - Longer training
 - Possibly the most important factor
Importance of State space complexity
Training Data

- Random play
 - Limited use
- Fixed opponent
 - Game environment and opponent are one
- Database play
 - Speed
- Self-play
 - No outside sources for data
 - Slow
 - Learns what works
- Hybrid methods
Improvement: General

- Reward size
 - Fixed value
 - Based on end board
- Board encoding
- When to learn?
 - Every move?
 - Random moves?
- Repetitive learning
- Board inversion
- Batch learning
Improvement: Neural Network

- Functions in Neural Network
 - Radial Basis Functions
- Training algorithm
 - RPROP
- Random weight initialization
 - Significance
Improvement: Self-play

- **Asymmetry**
 - Game-tree + function approximator

- **Player handling**
 - Tesauro adds an extra unit
 - Negate score (zero-sum game)
 - Reverse colors

- **Random moves**
 - Algorithm

- **Informed final board evaluation**
Evaluation

- Tic-tac-toe and Connect 4
 - Amenable to TD-learning
 - Human board encoding is near optimal
- Networks across multiple games
 - A general game player
 - Plays perfectly near end game
 - Randomly otherwise
 - Random-decay handicap
 - % of moves are random
 - Common system
Random Initializations

- Significant impact on learning
Inverted Board

- Speeds up initial training
Random Move Selection

- More sophisticated techniques are required
Reversed Color Evaluation
Batch Learning

- Similar to control

![Graph showing percentage of games won over 100's of training games]
Repetitive learning

- No advantage
Informed Final Board Evaluation

- Extremely significant

![Graph showing percentage of games won over hundreds of training games with two lines representing different conditions: Control and No-Final Guidance Agent.](image)
Conclusion

- Inverted boards and reverse color evaluation
- Initialization is important
- Biased randomization techniques
- Batch learning has promise
- Informed final board evaluation is important