

Paper Background

- Reinforcement learning in board games
 - Imran Ghory
 - **o** 2004
- Surveys progress in last decade
- Suggests improvements
- Formalizes key game properties
- Develops a TD-learning game system

Why board games?

Regarded as a sign of intelligence and learning
 Chess

Games as simplified models Battleship

Existing methods of comparison

• Rating systems

What is reinforcement learning?

After a sequence of actions get a reward
 o Positive or negative

• Temporal credit assignment problem

- Determine credit for the reward
- **•** Temporal Difference Methods
 - × TD-lambda

History

- Basics developed by Arthur Samuel
 Checkers
- Richard Sutton introduced TD-lambda
- Gerald Tesauro creates TD-Gammon
- Chess and Go
 - Worse then conventional AI

History

• Othello

- Contradictory results
- Substantial growth since then
- TD-lambda has potential to learn game variants

Conventional Strategies

- Most methods use an evaluation function
- Use minimax/alpha-beta search
- Hand-designed feature detectors
 - Evaluation function is a weighted sum

• So why TD learning?

- Does not need hand coded features
- Generalization

Temporal Difference Learning

 $Output = \sum_{k=1}^{H} f(\sum_{j=1}^{N} I_{j,k} W_{j}^{I}) W_{k}^{O}$

- N is the number of input nodes.
- ${\bf H}$ is the number of hidden nodes.
- f() is our non-linear function.

Temporal Difference Learning

$$\Delta W_t = \alpha \sum_{k=1}^t \lambda^{t-k} \nabla_w Y_k d_t$$

t is time (in our case move number).

T is the final time (total number of moves).

 Y_t is the evaluation of the board at time t when $t \neq T$.

 Y_T is the true reward (i.e. win, loss or draw).

 $\alpha\,$ is the learning rate.

 $\nabla_w Y_k$ is the partial derivative of the weights with respect to the output.

 d_T is the temporal difference.

Disadvantage

Requires lots of training

• Self-play

- Short-term pathologies
- Randomization

TD Algorithm Variants

• TD-Leaf

o Evaluation function search

TD-Directed

o Minimax search

• TD-Mu

• Fixed opponent

• Use evaluation function on opponent's moves

Current State

- Many improvements
 - Sparse and dubious validation
 - Hard to check
- Tuning weights
 - Nonlinear combinations
 - Differentiate between effective and ineffective
- Automated evolution method of feature generation
 Turian

Important Game Properties

Board Smoothness

- o Capabilities tied to smoothness
- Based on the board representation

• Divergence rate

- Measure how a single move changes the board
- Backgammon and Chess low to medium
- o Othello high

Forced exploration

State space complexity

- Longer training
- o Possibly the most important factor

Training Data

- Random play
 - Limited use

Fixed opponent

• Game environment and opponent are one

Database play

- o Speed
- Self-play
 - o No outside sources for data
 - o Slow
 - o Learns what works
- Hybrid methods

Improvement: General

Reward size

- Fixed value
- Based on end board
- Board encoding
- When to learn?
 - Every move? Random moves?
- Repetitive learning
- Board inversion
- Batch learning

Improvement: Neural Network

Functions in Neural Network

• Radial Basis Functions

Training algorithm
 ORPROP

Random weight initialization

• Significance

Improvement: Self-play

Asymmetry

• Game-tree + function approximator

• Player handling

- Tesauro adds an extra unit
- Negate score (zero-sum game)
- Reverse colors

Random moves

o Algorithm

Informed final board evaluation

Evaluation

Tic-tac-toe and Connect 4

- Amenable to TD-learning
- Human board encoding is near optimal

Networks across multiple games

- A general game player
 - × Plays perfectly near end game
 - × Randomly otherwise
- Random-decay handicap
 - × % of moves are random
 - × Common system

Random Initializations

• Significant impact on learning

Conclusion

- Inverted boards and reverse color evaluation
- Initialization is important
- Biased randomization techniques
- Batch learning has promise
- Informed final board evaluation is important