

Problem Set I

Due in class on Tuesday, October 15

1) (a) Consider a system with one degree of freedom and suppose its Lagrangian is a function of \ddot{q} as well as q and \dot{q} , i.e. $L = L(q, \dot{q}, \ddot{q})$. Derive the Euler-Lagrange equations for this case, obtained by requiring $S[\gamma]$ to be an extremum with respect to variations which keep both q and \dot{q} fixed at the endpoints. What is the maximum number of time derivatives of q that can appear in the equations of motion?

(b) Obtain a Hamiltonian formulation of the equations of motion for this system as follows: Write $Q_1 = q$, $Q_2 = \dot{q}$ and define

$$P_2 = \partial L / \partial \ddot{q} = \partial L / \partial \dot{Q}_2 \quad (*)$$

Define the function H by,

$$H(Q_1, Q_2, P_1, P_2) = P_1 Q_2 + P_2 \ddot{Q}_2 - L(Q_1, Q_2, \dot{Q}_2)$$

where it is understood that \ddot{Q}_2 has been expressed as a function of (Q_1, Q_2, P_2) by solving (*). Show that Hamilton's equations of motion for H are equivalent to the Euler-Lagrange equations derived in part (a).

2) Let $L(q, \dot{q}, t)$ be the Lagrangian of a particle moving in one dimension. Let $f(q, t)$ be an arbitrary function and define a new Lagrangian L' by adding the "total time derivative" of f to L , i.e.,

$$\begin{aligned} L'(q, \dot{q}, t) &= L(q, \dot{q}, t) + \frac{df}{dt} \\ &= L(q, \dot{q}, t) + \frac{\partial f}{\partial q} \dot{q} + \frac{\partial f}{\partial t} \end{aligned}$$

(a) Show that the equations of motion for L' are identical to those for L .

(b) Relate the new canonical momentum, p' , for L' to the old canonical momentum, p , for L . Express the new Hamiltonian $H'(q, p', t)$ for L' in terms of the old Hamiltonian $H(q, p, t)$ and f . Use the chain rule to express partial derivatives of H' with respect to (q, p') in terms of partial derivatives of H with respect to (q, p) . Explicitly show, thereby, that the new Hamilton's equations for H' are equivalent to the old Hamilton's equations for H .

3) (a) A particle in ordinary 3-dimensional space, \mathbf{R}^3 is constrained to move on a 2-dimensional surface, S . Let (q_1, q_2) be coordinates on S . Show that the kinetic energy of the particle can be written in the form

$$T = \frac{1}{2}m \sum_{i,j} g_{ij}(q_1, q_2) \frac{dq_i}{dt} \frac{dq_j}{dt}$$

and express g_{ij} explicitly in terms of the vector function $\vec{x}(q_1, q_2)$ on S . (The quantities g_{ij} are the components of the *induced metric tensor* on S).

(b) For a system with n degrees of freedom having a Lagrangian of the form

$$L = \frac{1}{2} \sum_{i,j} g_{ij}(q_1, \dots, q_n) \frac{dq_i}{dt} \frac{dq_j}{dt}$$

write down the Euler-Lagrange equations of motion.

(c) Show that the curves, γ , which satisfy the Euler-Lagrange equations of part (b) also extremize the distance along γ , $D[\gamma]$, between two points, where $D[\gamma]$ is given by

$$D[\gamma] = \int_{S_0}^{S_1} \left[\sum_{i,j} g_{ij}(q_1, \dots, q_n) \frac{dq_i}{ds} \frac{dq_j}{ds} \right]^{\frac{1}{2}} ds$$

Such curves are called geodesics, and the combined results of parts (a), (b), and (c) show that a free particle confined to a surface, S moves on a geodesic in that surface.