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Problem Set III Solutions v1.2

1) As seen in the previous problem set, the Lagrangian for a (non-relativistic) particle

of mass, m, and charge, e, in a magnetic field ~B is

L =
1

2
m

∣∣∣∣d~xdt

∣∣∣∣2 +
e

c
~A · d~x

dt

Consider the vector potential ~A = 1
2
~B0 × ~x (with ~B0 constant), corresponding to a

uniform magnetic field, ~B0.

(a) Identify all of the (one-parameter groups of) spatial symmetries of this La-
grangian.

Solution: Translations are a symmetry of the kinetic energy, and translations
along the ~B0 axis are symmetries of the potential energy ( since ~B0 × ~B0 = 0) so

translations in the direction of ~B0 are one symmetry. Further, rotations are also a
symmetry of the kinetic energy. For rotations about ~B0, and only for rotations about
~B0, we have ~B0 × (R~x) = R( ~B0 × ~x), where R is the rotation matrix. Hence the

potential term changes as ~A ·~v → (R ~A) · (R~v) = ~A ·~v since rotations are orthogonal

transformations. Thus rotations about ~B0 are also symmetries. These are the only
continuous spatial symmetries. �

(b) Choose coordinates adapted to these symmetries.

Solution: It is natural to choose cylindrical coordinates, with ~B0 = B0ẑ. The
Lagrangian should then be independent of z and θ (see part (c)). �

(c) Write down all the constants of motion associated with these symmetries as well
as the constant of motion associated with the time translation symmetry.

Solution: When the Lagrangian is expressed in terms of coordinates adapted
to its symmetries, the conserved quantities will be the momenta conjugate to its
cyclic coordinates. First, we expand the Lagrangian in terms of components:

L =
1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]

+
e

2c
B0(xẏ − yẋ).

Now, we switch to cylindrical coordinates using:

x = ρ cos θ ⇒ ẋ = ρ̇ cos θ − ρ sin θθ̇

y = ρ sin θ ⇒ ẏ = ρ̇ sin θ + ρ cos θθ̇,
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which gives

L =
1

2
m
[
ρ̇2 + ρ2θ̇2 + ż2

]
+

e

2c
B0ρ

2θ̇.

As promised, the Lagrangian is independent of z and θ. So the conserved quantitities
are:

Pz =
∂L

∂ż
= mż = const

and

Pθ =
∂L

∂θ̇
= mρ2

[
θ̇ +

eB0

2mc

]
= const.

Finally, we want the constant of motion of associated with time translation invari-
ance, also known as the Hamiltonian. First we’ll need to momentum conjugate to
ρ:

Pρ =
∂L

∂ρ̇
= mρ̇.

Thus, the Hamiltonian is:

H =
∑

i

Piq̇i − L =
1

2
m
[
ż2 + ρ̇2 + ρ2θ̇2

]
= T.

The Hamiltonian is equal to the kinetic energy because magnetic fields do no work;
the “potential” term ~A · ~v does not represent potential energy. �

(d) Obtain the general solution to the equations of motion. (It will simplify your
analysis to make use of the freedom available in choosing the origin of coordinates
relative to the initial position and velocity of the particle.)

Solution: Since we have 3 first integrals of the motion, it is helpful to see what
they do before we start hacking away with the Euler-Lagrange equations. Indeed,
we can plug the conservation of z-momentum into the Hamiltonian and solve for ρ̇,
yielding

ρ̇ = ±
√

2H

m
− P 2

z

m2
− ρ2θ̇2.

Now if we choose our coordinate system so that ρ(0) = 0, then Pθ(0) = 0. But Pθ

is a conserved quantity, and hence stays zero for all time, which means that either

ρ(t) = 0 or θ̇(t) = − eB0

2mc
.

In the first case, the particle just goes along the z-axis with constant velocity. In
the second, we can plug θ̇ into the equation for ρ̇ to obtain:

ρ̇ = ±
√

2H

m
− P 2

z

m2
− ρ2

e2B2
0

4m2c2
.

Now we let

u = ρ
eB0

2mc
; a2 =

2H

m
− P 2

z

m2
> 0
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and separate the variables to get∫ u(t)

u(0)

2mc

eB0

±du√
a2 − u2

= ±2mc

eB0

sin−1 u

a

∣∣∣∣u(t)

u(0)

= t =

∫ t

0

dt′.

Since ρ(0) = 0 ⇒ u(0) = 0, we find that

ρ(t) = ±2mc

eB0

√
2H

m
− P 2

z

m2
sin

(
eB0t

2mc

)
.

Note that the special case of ρ(t) = 0 mentioned above corresponds to (from the
ρ̇ equation) 2H = P 2

z /m. This equality means that the amplitude of the sinusoidal
solution vanishes, in complete agreement. This energy condition also corresponds
with our intuition: when the initial velocity is entirely along the B-field, so all the
energy is in the z direction, the particle experiences no force from the B-field. From
the conservation equations we can also find z and θ:

z(t) =
Pz

m
t + z(0) ; θ(t) = − eB0

2mc
t + θ(0).

Since ρ → −ρ and θ → θ + π are the same transformation, we can consider just the
+ solution for ρ(t) and absorb the orientation into θ(0). Finally, we show that this
solution corresponds to helical motion. Taking, for example, the θ(0) = 0 solution,
its x and y coordinates are

(x(t), y(t)) =
2mc

eB0

√
2H

m
− P 2

z

m2

(
sin

(
eB0t

2mc

)
cos

(
eB0t

2mc

)
,− sin

(
eB0t

2mc

)2
)

,

so its distance from the axis of the helix

(
0,−1

2
2mc
eB0

√
2H
m
− P 2

z

m2

)
is

2mc

eB0

√
2H

m
− P 2

z

m2

√
sin2 ωt cos2 ωt +

(
sin2 ωt− 1

2

)2

=
1

2

2mc

eB0

√
2H

m
− P 2

z

m2
.

Hence, the particle moves in a (possibly degenerate) helix. �
Note: Many students tried to solve this problem using the EL equations. That

is certainly possible, but you must make use of the conservation equations to make
the equations of motion tractable. For example, having made a choice of ρ(0) = 0
to make θ̇ constant, you would then find that the EL equation for ρ is ρ̈ = const×ρ,
which gives the above sinusoidal solutions.

2) A particle of mass, m, moving in ordinary, 3-dimensional space, is acted upon by a

“central potential”, i.e. the potential, V , depends only upon r = (x2 + y2 + z2)
1
2 .

(a) Write down the Lagrangian, L, for the problem in spherical polar coordinates
(r, θ, φ).
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Solution: Our Lagrangian is

1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]
− V (r).

Spherical and Cartesian coordinates are related by

x = r sin θ cos ϕ ⇒ ẋ = ṙ sin θ cos ϕ + r cos θ cos ϕθ̇ − r sin θ sin ϕϕ̇

y = r sin θ sin ϕ ⇒ ẏ = ṙ sin θ sin ϕ + r cos θ sin ϕθ̇ + r sin θ cos ϕϕ̇

z = r cos θ ⇒ ż = ṙ cos θ − r sin θθ̇.

Plugging these into the Lagrangian yields

L =
1

2
m
[
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

]
− V (r) �

(b) Explicitly obtain expressions for the 3 constants of motion which arise from the

invariance of L under rotations about the x, y, and z axes.
Solution: The constants of the motion will be, of course, the angular momen-

tum, but let us see how Noether’s theorem gives them to us. Let us first consider
rotations about the z-axis. These can be easily expressed as the 1-parameter family:

rs = r ; θs = θ ; ϕs = ϕ + s.

Noether’s theorem says that the conserved quantity is

Lz =
∑

i

∂L

∂q̇i

dqi

ds

∣∣∣∣
s=0

=
∂L

∂ϕ̇

d(ϕ + s)

ds

∣∣∣∣
s=0

= mr2 sin2 θϕ̇.

Notice that the machinery of Noether’s theorem wasn’t really necessary in this case;
we could have used the fact that the Lagrangian was cyclic in ϕ to obtain a conserved
quantity. Now let us consider rotations about the x-axis, which are easily expressed
in Cartesian coordinates by the 1-parameter family

xs = x ; ys = y cos s− z sin s ; zs = z cos s + y sin s.

Ultimately, we want the conserved quantity expressed in spherical coordinates.
Thus, we have two choices: we can either re-express the 1-parameter family in
spherical coordinates and compute the conserved quantity directly, or we can first
compute the quantity, then convert to polar coordinates. It turns out that the
second option is easier. So

Lx =
∂L

∂ẏ

d(y cos s− z sin s)

ds

∣∣∣∣
s=0

+
∂L

∂ż

d(z cos s + y sin s)

ds

∣∣∣∣
s=0

= m [yż − zẏ] ,
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which is indeed the angular momentum about x. Converting to polar coordinates
yields:

Lx = −mr2
[
sin ϕθ̇ + sin θ cos θ cos ϕϕ̇

]
.

By the same procedure with the 1-parameter family

xs = x cos s + z sin s ; ys = y ; zs = z cos s− x sin s

we obtain

Ly = m [zẋ− xż] = mr2
[
cos ϕθ̇ − sin θ cos θ sin ϕϕ̇

]
. �

(c) Derive an equation expressing ṙ as a function of r and constants of the motion.
(This equation, together with similar equations for φ and θ obtained from part (b),
reduces the general central force problem “to quadratures”.)

Solution: Since L is time-independent and of the standard form T − V , the
total energy E is conserved:

E =
1

2
m
[
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

]
+ V (r) = const.

Next, note that

L2 = L2
x + L2

y + L2
z = m2r4

[
θ̇2 + sin2 θϕ̇2

]
,

so we can write

E =
1

2

[
ṙ2 +

L2

mr2

]
+ V (r).

Inverting this equation yields:

ṙ = ±
√

2(E − V )

m
− L2

mr2
. �

3) Let W be a finite dimensional vector space over R or C, and let U : W → W be a
linear map.

(a) Show that U preserves the norm of all vectors if and only if U †U = I. For a real
vector space, such a U is called an orthogonal map; for a complex vector space, U
is called a unitary map.

Solution: Proving (if) is easy. Let y = Ux, and suppose U †U = I. Then

||y|| =
√
〈y | y〉 =

√
〈Ux |Ux〉 =

√〈
x
∣∣U †Ux

〉
=
√
〈x |x〉 = ||x||,

hence U is norm preserving.
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Proving (only if) is slightly trickier. Suppose U is norm preserving. Then the
formula

〈x | y〉 =
1

4

[
||x + y||2 − ||x− y||2

]
+

1

4i

[
||x + iy||2 − ||x− iy||2

]
tells us that U is also inner product preserving (for a real vector space we only need
the first term on the RHS). Hence we have that〈

U †Ux
∣∣ y〉 = 〈Ux |Uy〉 = 〈x | y〉 ∀ y ∈ W.

Since this equation holds for all y ∈ W , it tells us that U †Ux = x, i.e., U † is the left
inverse of U , as desired. As similar, but more concrete, argument is to use the fact
that U maps orthonormal bases to orthonormal bases, then leverage those equations
to show that

〈
U †Uei

∣∣ ej

〉
= δij, i.e., U †U = I.

Note: Many students wrote on their homework that 〈x |Ax〉 = 〈x |x〉 ⇒ A =
I, for A = U †U . This is not true of a general operator A, even if the above
equation holds for all x. As an example, let W = R2 and consider the operator

A =

[
1 1
−1 1

]
. Then 〈(x, y) |A(x, y)〉 = x2 + y2 = 〈(x, y) | (x, y)〉 for an arbitrary

vector (x, y) ∈ R2. When the above equation holds for all x and A is of the form
U †U , you can conclude that A = I, but that is what you’re being asked to show.

Note 2: In the above proof, I showed that U † is the left-inverse of U . Since W
is finite dimensional, this actually means that U † = U−1. In an infinite dimensional
vector space, it is possible for U † to be a left inverse without also being the right
(and hence actual) inverse. In these cases, U † will not be norm preserving despite
the fact that U is. �

(b) For an orthogonal or unitary map, U , show that (i) Any eigenvalue, λ, of U
satisfies |λ| = 1. (ii) Any two eigenvectors of U with distinct eigenvalues must be
orthogonal. (iii) If a subspace S satisfies U [S] ⊂ S, then U [S⊥] ⊂ S⊥ (Hint: Show
that U [S] = S and hence U−1[S] = S.)

Solution: (i) Let v be an eigenvector with eigenvalue λ. Then

〈v | v〉 = 〈Uv |Uv〉 = 〈λv |λv〉 = |λ|2 〈v | v〉 ⇒ |λ| = 1,

as desired.
(ii) Let v, w be eigenvectors with distinct eigenvalues λ, µ respectively, and

assume 〈v |w〉 6= 0. Then a repetition of the calculation in (i) shows that µ∗λ =
1 ⇒ arg µ = arg λ. Since both eigenvalues are of unit modulus by part (i), this
means they are equal, a contradiction. The only resolution is if the equation is
trivial, i.e., v and w are orthogonal.

(iii) U is 1-1 by part (i) (it has no zero eigenvalues), so dim U [S] = dim S. Since
we have U [S] ⊆ S, this means that U [S] = S. Hence any y ∈ S is of the form
y = Ux, x ∈ S. Let z ∈ S⊥. Then 〈Uz | y〉 = 〈Uz |Ux〉 = 〈z |x〉 = 0 since z ∈ S⊥.
Hence Uz ∈ S⊥, as desired. �
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