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Problem Set IV-Solutions

1) Consider the “heavy symmetrical top” treated in class (and also discussed
in Goldstein and Arnold). Suppose we impose the following additional con-
straint on the top: The symmetry axis is forced to rotate about the z-axis
with uniform angular velocity φ̇ = Ω. Then the top has only two degrees of
freedom, which may be “coordinatized” by the remaining Euler angles (θ, ψ).

(a) Write down the Lagrangian for this system.

(b) Write down the constants of motion and explicitly reduce the problem of
finding the general motion “to quadratures”.

(c) Find the most general choice of initial conditions (θ0, θ̇0, ψ0, ψ̇0) for which
the solution has θ̇ = 0 for all time (and hence θ(t) = θ0). Are these solutions
stable insofar as the θ-motion is concerned, i.e., if the initial conditions differ
by a small amount from the ones yielding θ = 0, does θ(t)− θ0 remain small
for all time?

The Lagrangian for the unconstrained system is:

L =
I1

2
(θ̇2 + φ̇2 sin2 θ) +

I3

2
(ψ̇ + φ̇ cos θ)2 −Mgl cos θ (1)

where I1 and I3 are the moments of inertia, M is the mass, l is the height of
the center of mass along the central principal axis, and φ, θ, ψ are the Euler
angles. To constrain the system we add a ”non-dynamical” field β with the
term −β(φ̇ − Ω) in the Lagrangian. This has the effect of replacing φ̇ with
Ω in the above Lagrangian. The Lagrangian is , therefore:

L =
I1

2
(θ̇2 + Ω2 sin2 θ) +

I3

2
(ψ̇ + Ω cos θ)2 −Mgl cos θ (2)

Since the Lagrangian does not depend on ψ, we can immediately write down
one constant of the motion (from the equation for ψ):

d

dt
[I3(ψ̇ + Ω cos θ)] =

d

dt
[I3ω3] = 0 (3)

Since the system is conservative, the other constant of motion is the energy:

E =
I1

2
(θ̇2 + Ω2 sin2 θ) +

I3

2
ω2

3 +Mgl cos θ (4)



Define E ′ = E − I3
2
ω2

3 and u = cos θ, then we have:

E ′ =
I1

2
(

u̇2

1− u2
+ Ω2(1− u2)) +Mglu (5)

Solving for u̇ we have:

u̇2 = (
2(E ′ −Mglu)

I1

)(1− u2)− Ω2(1− u2)2 (6)

Further define α = 2E′

I1
and β = 2Mgl

I1
. We can solve for u now with the

following quadrature:

t =
∫ u(t)

u(0)

du√
(α− βu)(1− u2)− Ω2(1− u2)2

(7)

From the Lagrangian, the equation of motion for θ is

I1θ̈ = I1Ω2 sin θ cos θ − I3(ψ̇ + Ω cos θ)(sin θ)Ω +Mgl sin θ (8)

Setting θ̈ = 0 and noting that ψ̇ + Ω cos θ = ω3 is a constant we see that
either sin θ = 0 or:

cos θ =
I3ω3Ω−Mgl

I1Ω2
(9)

Here θ must be a constant, since the right hand side is a constant, thus
θ̈ = 0 → θ̇ = 0. With sin θ(t) = 0, θ(t) = 0 or π, (although π is unphysical
for a real top, we might be dealing with a gyroscope or similar system), then
ψ̇ = ω3 ∓ Ω. So, our first sets of allowed initial conditions which produce
θ̇(t) = 0 are:

θ̇ = 0, θ = 0, ψ̇ = ψ̇0, ψ = ψ0

θ̇ = 0, θ = π, ψ̇ = ψ̇0, ψ = ψ0

We use the equation of motion for θ to determine stability. Expanding about
the equilibrium point, to first order in θ this equation is:

I1δ̈θ = [I1Ω2 − I3(±ψ̇ + Ω)Ω±Mgl]δθ (10)

where the ± indicates expansion around θ = 0 or π, respectively. This
solution is stable if the term in brackets in negative, otherwise it is unstable.
The condition on ψ̇ for stability, then, is:

±ψ̇ > [
I1Ω2 ±Mgl

I3Ω
− Ω] (11)



if Ω 6= 0 and the stability is the same as that of a pendulum if Ω = 0 (as it
should be; think about it, you’re forcing Ω = 0). The other solutions come
from Equation (9), which is (substituting for ω3):

cos θ0 =
I3(ψ̇ + Ω cos θ)Ω−Mgl

I1Ω2
(12)

which gives:

cos θ0 =
I3Ωψ̇ −Mgl

(I1 − I3)Ω2
(13)

This has solutions only for the RHS being in the interval (−1, 1). So ψ̇ must
satisfy:

(I3 − I1)Ω2 +Mgl

I3Ω
< ψ̇ <

(I1 − I3)Ω2 +Mgl

I3Ω
(14)

with cos θ0 determined by equation (13), θ̇0 = 0 and ψ = ψ0. The reverse
relationship holds if I3 > I1. If we again expand the equation of motion for
θ around this point we have:

I1δ̈θ = [−I1Ω2 sin2 θ0 + I3Ω2 sin2 θ0]δθ (15)

so these points are stable if I1 > I3, metastable if I1 = I3, and unstable
otherwise.

2) Consider a rigid body in “free motion’ (i.e. V = 0), with a point in the body
fixed.

(a) Show that the motion of uniform rotation about an axis fixed in space is
dynamically possible if and only if that axis coincides with a principal axis
of the body.

(b) Suppose that the eigenvalues of the inertia tensor satisfy I1 < I2 < I3.
Show that the solutions of uniform rotation about the ê1 and ê3 axis are sta-
ble, but the solution of uniform rotation about the ê2 axis is unstable. [Note:

This problem can be solved by finding the orbits in ~Ω-space by intersecting
the surface of constant energy with the surface of constant squared angular
momentum, as done in Arnold and Goldstein. Rather than copy their solu-
tions, please do the problem by writing down and solving the (approximate)
Euler equations for a small departure from uniform rotation about a principal
axis.]

(a) Uniform rotation means we have:

d~L

dt
)s = 0 (16)



where the s denotes that the coordinate system is space-fixed. This implies:

d~L

dt
)s =

d~L

dt
)b + ~ω × ~L = 0 (17)

Uniform motion in the space-fixed frame implies that d~L
dt

)b = 0 so we are left
with:

~ω × ~L = 0 (18)

Since we have the relation:
~L = I · ~ω (19)

Equation (18) is satisfied if and only if ~L is parallel to ~ω. This will be true
if and only if ~ω is an eigenvector of I. Q.E.D.

(b) The Euler equations are:

Iiω̇i − ωjωk(Ij − Ik) = 0 (20)

for i, j, k a cyclic permutation of 1,2,3. Setting ω̇i = 0 gives (since no 2 I’s
equal each other):

ωjωk = 0 (21)

which can only be solved if 2 of the 3 ω’s are 0. So uniform rotation corre-
sponds to rotation about only 1 principal axis, as above. If we expand the
Euler equations about one of these solutions (say for ω1 = ω0, ω2 = ω3 = 0):

Ii ˙δωi = 0 (22)

Ij ˙δωj = (δωk)ωi(Ik − Ii) (23)

Ik ˙δωk = (δωj)ωi(Ii − Ij) (24)

Deferentiating the second two equations with respect to time and substituting
the appropriate equations for ˙δωi we have:

Ij ¨δωj = ω2
i

(Ik − Ii)(Ii − Ij)
Ik

δωj (25)

Ik ¨δωk = ω2
i

(Ii − Ij)(Ik − Ii)
Ij

δωk (26)

If we take i = 1 or i = 3 then the right hand coefficients are negative, hence
the direction of motion is stable. If i = 2, the coefficients are positive and
the motion is unstable.

3) Three particles, each of mass m, are constrained to lie on a circle and are
connected by identical springs lying on the circle, each of spring constant k,
as shown. Find the general solution for the motion of these particles.



If the radius of the circle is a, the Lagrangian for this system is:

L =
3∑
i=1

1

2
ma2φ̇i

2 − 1

2
ka2(φi − φi+1)2 (27)

We can rewrite this equation as:

L =
1

2
ma2 ~̇φ2 − 1

2
ka2~φ ·A~φ (28)

where:

A =

 2 −1 −1
−1 2 −1
−1 −1 2

 (29)

The equation of motion is:

ma2 ~̈φ = −ka2A~φ (30)

The solutions of this equation are ~φ(t) = ~φi exp(−iωit), where ~φi is an eigen-
vector of A with eigenvalue λi. This yields:

ma2ω2
i = ka2λi (31)

so the frequency of oscillation of each mode is:

ωi =

√
kλi
m

(32)

A quick calculation shows that the eigenvectors are:

~φ1 =
(

1 1 1
)

(33)

~φ2 =
(

1 0 −1
)

(34)

~φ3 =
(

1 −2 1
)

(35)

with eigenvalues

λ1 = 0 (36)

λ2 = 3 (37)

λ3 = 3 (38)

These have ω1 = 0 and ω2 = ω3 =
√

3k
m

. Since ω1 = 0, we must mulitply

~φ1 by a linear function of time (because this is also a solution). The general
motion is then:

~φ(t) = (A1 +B1t) ~φ1 + (A2
~φ2 + A3

~φ3) exp(−i
√

3k

m
t) (39)



with initial conditions determining the constants as:

~φ(0) = A1
~φ1 + A2

~φ2 + A3
~φ3 (40)

~̇φ(0) = B1
~φ1 − i

√
3k

m
(A2

~φ2 + A3
~φ3) (41)


