

Problem Set V

Due in class on Tuesday, November 12

- 1) A body of mass m is constrained to move only horizontally (i.e., in the x -direction) and is attached to a fixed support by a spring of spring constant k . A particle also of mass m is attached to the first body by a massless rod of length l as shown. A gravitational field is present, so the potential energy of the second particle is mgz . Suppose that, initially, the first body is at the equilibrium position of the spring, but the particle below it is displaced from the vertical by a small angle θ_0 as shown. Solve for the subsequent motion of both bodies.
- 2) Consider a “double pendulum” with each pendulum of mass m and length l , and with a vertical gravitational force $-mg\hat{z}$ acting on each mass. At $t = 0$ the double pendulum is vertical, but the top mass is given a small “kick”, so that it has “velocity” $\dot{\theta}_{10}$. Solve for the subsequent motion of the masses.
- 3) Consider a particle of mass m moving in a 2-dimensional plane, with a potential, $V = V(r)$, which depends only on the radius r .
 - (a) Use the symmetry under rotations to reduce the problem to one of one-dimensional motion in r .
 - (b) Explicitly write down the equation of motion in r and show that a circular orbit exists at every radius at which $dV/dr > 0$.
 - (c) Obtain the general solution for the radial motion resulting from an arbitrary small perturbation about a circular orbit of radius r_0 . (Allow the perturbation to change p_ϕ .) Determine the conditions on V such that this circular orbit is stable.