

Problem Set VI Solutions

- 1) Consider a space M with coordinates y^μ and define the Poisson-bracket-like map on functions on M by

$$W(f, g) = \sum_{\mu, \nu} W^{\mu\nu} \frac{\partial f}{\partial y^\mu} \frac{\partial g}{\partial y^\nu}$$

where $W^{\mu\nu}$ is any antisymmetric matrix (i.e., $W^{\nu\mu} = -W^{\mu\nu}$) whose components are constant (i.e., independent of y^μ). Show that W satisfies the Jacobi identity, i.e.,

$$W(W(f, g), h) + W(W(h, f), g) + W(W(g, h), f) = 0$$

Solution: Summation will be implied over repeated indices. First:

$$W(W(f, g), h) = W^{\mu\nu} W^{\sigma\rho} \frac{\partial}{\partial y^\mu} \left(\frac{\partial f}{\partial y^\sigma} \frac{\partial g}{\partial y^\rho} \right) \frac{\partial h}{\partial y^\nu} \quad (1)$$

So:

$$\begin{aligned} W(W(f, g), h) + W(W(h, f), g) + W(W(g, h), f) = \\ W^{\mu\nu} W^{\sigma\rho} \left[\frac{\partial}{\partial y^\mu} \left(\frac{\partial f}{\partial y^\sigma} \frac{\partial g}{\partial y^\rho} \right) \frac{\partial h}{\partial y^\nu} + \right. \\ \left. \frac{\partial}{\partial y^\mu} \left(\frac{\partial h}{\partial y^\sigma} \frac{\partial f}{\partial y^\rho} \right) \frac{\partial g}{\partial y^\nu} + \right. \\ \left. \frac{\partial}{\partial y^\mu} \left(\frac{\partial g}{\partial y^\sigma} \frac{\partial h}{\partial y^\rho} \right) \frac{\partial f}{\partial y^\nu} \right] \end{aligned} \quad (2)$$

Consider the terms only involving the second derivative of f :

$$W^{\mu\nu} W^{\sigma\rho} \left[\frac{\partial^2 f}{\partial y^\mu \partial y^\sigma} \frac{\partial g}{\partial y^\rho} \frac{\partial h}{\partial y^\nu} + \frac{\partial h}{\partial y^\sigma} \frac{\partial^2 f}{\partial y^\mu \partial y^\rho} \frac{\partial g}{\partial y^\nu} \right] \quad (3)$$

Because of the antisymmetry of the $W^{\mu\nu}$, we can switch σ and ρ in the first term at the cost of a minus sign (really we are replacing $W^{\sigma\rho}$ with $-W^{\rho\sigma}$ and then relabeling the indices):

$$W^{\mu\nu} W^{\sigma\rho} \left[-\frac{\partial^2 f}{\partial y^\mu \partial y^\rho} \frac{\partial g}{\partial y^\sigma} \frac{\partial h}{\partial y^\nu} + \frac{\partial h}{\partial y^\sigma} \frac{\partial^2 f}{\partial y^\mu \partial y^\rho} \frac{\partial g}{\partial y^\nu} \right] \quad (4)$$

The term in brackets is now symmetric in μ and ρ and antisymmetric in σ and ν . Since we have

$$W^{\mu\nu}W^{\sigma\rho} \rightarrow W^{\rho\sigma}W^{\nu\mu} = (-W^{\sigma\rho})(-W^{\mu\nu}) = W^{\mu\nu}W^{\sigma\rho} \quad (5)$$

all the terms involving the second derivative of f must be zero. The same applies to the second derivatives of g and h because those terms involve cyclic permutations of f , g , and h . Therefore

$$W(W(f, g), h) + W(W(h, f), g) + W(W(g, h), f) = 0 \quad (6)$$

QED

- 2) Let $f(q, p; t)$ and $g(q, p; t)$ be (possibly time-dependent) observables on a $2n$ -dimensional phase space with Hamiltonian $H(q, p; t)$.
 - (a) Suppose that both f and g are constants of motion, i.e., $df/dt = dg/dt = 0$. Show that $\Omega(f, g)$ also is a constant of motion.

Solution: In general, we have:

$$\frac{df}{dt} = \Omega(f, H) + \frac{\partial f}{\partial t} \quad (7)$$

where H is the Hamiltonian. So we wish to calculate:

$$\frac{d\Omega(f, g)}{dt} = \Omega(\Omega(f, g), H) + \frac{\partial\Omega(f, g)}{\partial t} \quad (8)$$

Using the Jacobi Identity, we have:

$$\frac{d\Omega(f, g)}{dt} = -\Omega(\Omega(H, f), g) - \Omega(\Omega(g, H), f) + \frac{\partial\Omega(f, g)}{\partial t} \quad (9)$$

But from Equation 7 and by hypothesis we have:

$$\frac{df}{dt} = \Omega(f, H) + \frac{\partial f}{\partial t} = 0 \Rightarrow \Omega(H, f) = \frac{\partial f}{\partial t} \quad (10)$$

$$\frac{dg}{dt} = \Omega(g, H) + \frac{\partial g}{\partial t} = 0 \Rightarrow \Omega(g, H) = -\frac{\partial g}{\partial t} \quad (11)$$

(Remember that $\Omega(f, g)$ is antisymmetric in f and g). So:

$$\frac{d\Omega(f, g)}{dt} = -\Omega\left(\frac{\partial f}{\partial t}, g\right) + \Omega\left(\frac{\partial g}{\partial t}, f\right) + \frac{\partial\Omega(f, g)}{\partial t} \quad (12)$$

However, because Ω is bilinear and antisymmetric in f and g , we have:

$$\frac{d\Omega(f, g)}{dt} = -\frac{\partial}{\partial t}\Omega(f, g) + \frac{\partial\Omega(f, g)}{\partial t} = 0 \quad (13)$$

QED

(b) Suppose that H itself is a constant of motion and $f(q, p; t)$ is a constant of motion. Show that $\frac{\partial^n f}{\partial t^n}$ also is a constant of motion.

Solution: From Equation 7, we have:

$$\frac{d}{dt} \frac{\partial^n f}{\partial t^n} = \Omega\left(\frac{\partial^n f}{\partial t^n}, H\right) + \frac{\partial}{\partial t} \frac{\partial^n f}{\partial t^n} \quad (14)$$

$$\frac{dH}{dt} = \Omega(H, H) + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t} \quad (15)$$

So

$$\frac{\partial H}{\partial t} = 0 \quad (16)$$

since H is a constant of the motion. Equation 16 in turn implies:

$$\frac{\partial}{\partial t} \Omega(f, H) = \Omega\left(\frac{\partial f}{\partial t}, H\right) + \Omega(f, \frac{\partial H}{\partial t}) = \Omega\left(\frac{\partial f}{\partial t}, H\right) \quad (17)$$

Thus:

$$\frac{d}{dt} \frac{\partial^n f}{\partial t^n} = \frac{\partial^n}{\partial t^n} \Omega(f, H) + \frac{\partial^n}{\partial t^n} \frac{\partial f}{\partial t} = \frac{\partial^n}{\partial t^n} \frac{df}{dt} = 0 \quad (18)$$

QED

- 3) Consider a particle of mass m in ordinary 3-dimensional space. Let L_x, L_y, L_z denote the usual Cartesian components of angular momentum of the particle, viewed as functions on its 6-dimensional phase space.
- (a) Show that $\Omega(L_x, L_y) = L_z$. (Thus, according to problem 2, if L_x and L_y are constants of motion, then so is L_z .)

Solution: The angular momenta are defined by:

$$L_i = (\vec{r} \times \vec{p})_i = x_j p_k - x_k p_j \quad (19)$$

for i, j , and k cyclic permutations of x, y , and z . So

$$\Omega(L_x, L_y) = \sum_i \frac{\partial L_x}{\partial x_i} \frac{\partial L_y}{\partial p_i} - \frac{\partial L_x}{\partial p_i} \frac{\partial L_y}{\partial x_i} \quad (20)$$

From Equation 19, the L_i do not contain either x_i or p_i , therefore:

$$\Omega(L_x, L_y) = \frac{\partial L_x}{\partial z} \frac{\partial L_y}{\partial p_z} - \frac{\partial L_x}{\partial p_z} \frac{\partial L_y}{\partial z} = (-p_y)(-x) - (y)(p_x) = L_z \quad (21)$$

QED

(b) Suppose that an observable $f(\vec{x}, \vec{p})$ depends on \vec{x} and \vec{p} only in the scalar combinations $\vec{x} \cdot \vec{x}$, $\vec{x} \cdot \vec{p}$, and $\vec{p} \cdot \vec{p}$, i.e., suppose that f can be written in the form

$$f(\vec{x}, \vec{p}) = h(\vec{x} \cdot \vec{x}, \vec{x} \cdot \vec{p}, \vec{p} \cdot \vec{p})$$

for some function h . Show that $\Omega(f, L_i) = 0$.

Solution: The easy way to do this problem is to note that the L_i are the generating functions of rotations about the x_i axis. Then we have:

$$\frac{df(\vec{x}, \vec{p})}{d\theta_i} = \Omega(f(\vec{x}, \vec{p}), L_i) \quad (22)$$

where θ_i is the angle of rotation about the x_i axis. From Problem 1 of Homework II we know that if we apply a rotation to the configuration variables we must apply the same rotation to the momentum variables. Therefore the combinations $\vec{x} \cdot \vec{x}$, $\vec{x} \cdot \vec{p}$, and $\vec{p} \cdot \vec{p}$ are all invariant under rotations about any axis. This implies that

$$\Omega(f(\vec{x}, \vec{p}), L_i) = \frac{df(\vec{x}, \vec{p})}{d\theta_i} = 0 \quad (23)$$

QED