
Physics 31600 R. Wald
Classical Mechanics Autumn, 2002

Problem Set VI Solutions

1) Consider a space M with coordinates yµ and define the Poisson-bracket-like
map on functions on M by

W (f, g) =
∑
µ,ν

W µν ∂f

∂yµ
∂g

∂yν

where W µν is any antisymmetric matrix (i.e., W νµ = −W µν) whose compo-
nents are constant (i.e., independent of yµ). Show that W satisfies the Jacobi
identity, i.e.,

W (W (f, g), h) +W (W (h, f), g) +W (W (g, h), f) = 0

Solution: Summation will be implied over repeated indices. First:

W (W (f, g), h) = W µνW σρ ∂

∂yµ
(
∂f

∂yσ
∂g

∂yρ
)
∂h

∂yν
(1)

So:

W (W (f, g), h) +W (W (h, f), g) +W (W (g, h), f) =

W µνW σρ[
∂

∂yµ
(
∂f

∂yσ
∂g

∂yρ
)
∂h

∂yν
+

∂

∂yµ
(
∂h

∂yσ
∂f

∂yρ
)
∂g

∂yν
+

∂

∂yµ
(
∂g

∂yσ
∂h

∂yρ
)
∂f

∂yν
] (2)

Consider the terms only involving the second derivative of f :

W µνW σρ[
∂2f

∂yµ∂yσ
∂g

∂yρ
∂h

∂yν
+

∂h

∂yσ
∂2f

∂yµ∂yρ
∂g

∂yν
] (3)

Because of the antisymmetry of the W µν , we can switch σ and ρ in the first
term at the cost of a minus sign (really we are replacing W σρ with −W ρσ

and then relabeling the indices):

W µνW σρ[− ∂2f

∂yµ∂yρ
∂g

∂yσ
∂h

∂yν
+

∂h

∂yσ
∂2f

∂yµ∂yρ
∂g

∂yν
] (4)



The term in brackets is now symmetric in µ and ρ and antisymmetric in σ
and ν. Since we have

W µνW σρ → W ρσW νµ = (−W σρ)(−W µν) = W µνW σρ (5)

all the terms involving the second derivative of f must be zero. The same
applies to the second derivatives of g and h because those terms involve cyclic
permutations of f , g, and h. Therefore

W (W (f, g), h) +W (W (h, f), g) +W (W (g, h), f) = 0 (6)

QED

2) Let f(q, p; t) and g(q, p; t) be (possibly time-dependent) observables on a 2n-
dimensional phase space with Hamiltonian H(q, p; t).
(a) Suppose that both f and g are constants of motion, i.e., df/dt = dg/dt =
0. Show that Ω(f, g) also is a constant of motion.

Solution: In general, we have:

df

dt
= Ω(f,H) +

∂f

∂t
(7)

where H is the Hamiltonian. So we wish to calculate:

dΩ(f, g)

dt
= Ω(Ω(f, g), H) +

∂Ω(f, g)

∂t
(8)

Using the Jacobi Identity, we have:

dΩ(f, g)

dt
= −Ω(Ω(H, f), g)− Ω(Ω(g,H), f) +

∂Ω(f, g)

∂t
(9)

But from Equation 7 and by hypothesis we have:

df

dt
= Ω(f,H) +

∂f

∂t
= 0⇒ Ω(H, f) =

∂f

∂t
(10)

dg

dt
= Ω(g,H) +

∂g

∂t
= 0⇒ Ω(g,H) = −∂g

∂t
(11)

(Remember that Ω(f, g) is antisymmetric in f and g). So:

dΩ(f, g)

dt
= −Ω(

∂f

∂t
, g) + Ω(

∂g

∂t
, f) +

∂Ω(f, g)

∂t
(12)

However, because Ω is bilinear and antisymmetric in f and g, we have:

dΩ(f, g)

dt
= − ∂

∂t
Ω(f, g) +

∂Ω(f, g)

∂t
= 0 (13)



QED

(b) Suppose that H itself is a constant of motion and f(q, p; t) is a constant
of motion. Show that ∂nf

∂tn
also is a constant of motion.

Solution: From Equation 7, we have:

d

dt

∂nf

∂tn
= Ω(

∂nf

∂tn
, H) +

∂

∂t

∂nf

∂tn
(14)

dH

dt
= Ω(H,H) +

∂H

∂t
=
∂H

∂t
(15)

So
∂H

∂t
= 0 (16)

since H is a constant of the motion. Equation 16 in turn implies:

∂

∂t
Ω(f,H) = Ω(

∂f

∂t
,H) + Ω(f,

∂H

∂t
) = Ω(

∂f

∂t
,H) (17)

Thus:
d

dt

∂nf

∂tn
=

∂n

∂tn
Ω(f,H) +

∂n

∂tn
∂f

∂t
=

∂n

∂tn
df

dt
= 0 (18)

QED

3) Consider a particle of mass m in ordinary 3-dimensional space. Let Lx, Ly, Lz
denote the usual Cartesian components of angular momentum of the particle,
viewed as functions on its 6-dimensional phase space.
(a) Show that Ω(Lx, Ly) = Lz. (Thus, according to problem 2, if Lx and Ly
are constants of motion, then so is Lz.)

Solution: The angular momenta are defined by:

Li = (~r × ~p)i = xjpk − xkpj (19)

for i, j, and k cyclic permutations of x, y, and z. So

Ω(Lx, Ly) =
∑
i

∂Lx
∂xi

∂Ly
∂pi
− ∂Lx
∂pi

∂Ly
∂xi

(20)

From Equation 19, the Li do not contain either xi or pi, therefore:

Ω(Lx, Ly) =
∂Lx
∂z

∂Ly
∂pz
− ∂Lx
∂pz

∂Ly
∂z

= (−py)(−x)− (y)(px) = Lz (21)

QED



(b) Suppose that an observable f(~x, ~p) depends on ~x and ~p only in the scalar
combinations ~x · ~x, ~x · ~p, and ~p · ~p, i.e., suppose that f can be written in the
form

f(~x, ~p) = h(~x · ~x, ~x · ~p, ~p · ~p)

for some function h. Show that Ω(f, Li) = 0.

Solution: The easy way to do this problem is to note that the Li are the
generating functions of rotations about the xi axis. Then we have:

df(~x, ~p)

dθi
= Ω(f(~x, ~p), Li) (22)

where θi is the angle of rotation about the xi axis. From Problem 1 of Home-
work II we know that if we apply a rotation to the configuration variables
we must apply the same rotation to the momentum variables. Therefore the
combinations ~x · ~x, ~x · ~p, and ~p · ~p are all invariant under rotations about any
axis. This implies that

Ω(f(~x, ~p), Li) =
df(~x, ~p)

dθi
= 0 (23)

QED


