

Problem Set VII

Due in class on Tuesday, December 3

1) (a) Show that the transformation on $2n$ -dimensional phase space associated with a coordinate transformation on configuration space, namely:

$$q_i \rightarrow Q_i(q)$$

$$p_i \rightarrow P_i(q, p) = \sum_j p_j \frac{\partial q_j}{\partial Q_i}$$

is a canonical transformation.

(b) On a 2-dimensional phase space, show that the transformation

$$q \rightarrow Q = \ln\left[\frac{1}{q} \sin p\right]$$

$$p \rightarrow P = q \cot p$$

is canonical.

2) Give an “elementary” proof of Liouville’s theorem as follows: Introduce local canonical coordinates $(q_1, p_1, q_2, p_2, \dots, q_n, p_n)$ and pretend that these are Cartesian coordinates in $2n$ -dimensional Euclidean space, \mathbf{R}^{2n} . Consider a bounded region, \mathcal{R} , of phase space covered by these coordinates. Let \mathcal{R}_t denote the image of \mathcal{R} under dynamical evolution by time t . Argue that the volume, $V(\mathcal{R}_t)$, of \mathcal{R}_t must satisfy

$$\frac{dV}{dt} = \int_{\partial\mathcal{R}_t} \vec{h} \cdot \hat{n} dS$$

where $\partial\mathcal{R}_t$ denotes the boundary of \mathcal{R}_t , \vec{h} denotes the Hamiltonian vector field, and \hat{n} denotes the unit outward pointing normal to $\partial\mathcal{R}_t$. Then show that $dV/dt = 0$.

3) (a) Find the generating function, $F_2(q, P)$, for the canonical transformation of problem 1(a) above.
 (b) Find the generating functions, $F_1(q, Q)$ and $F_2(q, P)$, for the canonical transformation of problem 1(b) above.
 (c) Explicitly choose a function of two variables, $f(x, y)$. Then obtain the canonical transformations on a 2-dimensional phase space that it generates via the generating functions (i) $F_1(q, Q) = f(q, Q)$ and $F_2(q, P) = f(q, P)$.