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Problem Set VII Solutions

(a) Show that the transformation on 2n-dimensional phase space associated with a coordi-
nate transformation on configuration space, namely:
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is a canonical transformation.

Solution: As was shown in class, in order to show that a transformation is canonical it
is sufficient to demonstrate that the new coordinates satisfy the Poisson bracket as functions
of the old coordinates. We first compute the easy bracket:
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since the ); are independent of p;. Next up are the mixed P() brackets:
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as desired. The last equality follows from the fact that the () are good coordinates on
configuration space so they must obey that relation. Finally, we need to do the P brackets,
which are bit of mess:
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Notice that in the terms involving second partial derivatives, we cannot blithely interchange
order of differentiation because different things are being held fixed. For the ¢ derivatives,
the other ¢'s are being held fixed, while for the @) derivative it is the other ’s. Now we
interchange the order of summation and note that
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Since these are partial derivatives where the same variables are being held fixed, we can
just interchange order of differentiation to yield

- ( 82611 32(1[ )
pFY - =0,
—\0Q;0Q;  0Q,0Q;




as desired. W
(b) On a 2-dimensional phase space, show that the transformation
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is canonical.

Solution: Again, we simply need to check that the new coordinates satisfy the canonical
commutation relations as functions of the old coordinates. The Q@) and PP brackets are
trivial because the Poisson bracket is antisymmetric and so vanishes for any function of p
and ¢. Thus, we just need to check the QP bracket, which is
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as desired.

Give an “elementary” proof of Liouville’s theorem as follows: Introduce local canonical
coordinates (q1, p1, q2, P2, ---, Gn, Pn) and pretend that these are Cartesian coordinates in 2n-
dimensional Euclidean space, R?". Consider a bounded region, R, of phase space covered
by these coordinates. Let R; denote the image of R under dynamical evolution by time t.
Argue that the volume, V(R;), of R; must satisfy

ﬂ:/ h - 2dS
dt .

where OR; denotes the boundary of R, h denotes the Hamiltonian vector field, and n
denotes the unit outward pointing normal to OR;. Then show that dV/dt = 0.

Solution: Consider a volume R; at a particular time in phase space. Corresponding
to this volume we can construct an ensemble of particles wherein each point in phase space
(q1,P1, 42, D2, -y @n, Pn) contained within the volume corresponds to the state of precisely
one particle in the ensemble. In this case the volume is equal to the number of particles
in the ensemble. If we wish to know the rate of change of the number of particles within
this volume at time ¢, we must calculate the flux of the particles across the boundary of

the volume of phase space. That is:
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where ¥ is the coordinate vector in phase space. ‘
But, Hamilton’s equations of motion are precisely # = h, so we have the result:
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Furthermore, the divergence theorem allows us to write this as:

ﬂ:/ h-qdS = | V-hdi 3)
dt OR, R
However, we have:
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(a) Find the generating function, Fy(g, P), for the canonical transformation of problem
1(a) above.
Solution: F; is given by Fy, = F} + zj P;Q;. Thus, we first need to find F; and then
we can simply compute F». Now F} satisfies
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so that we get
dFy = Z [de(]j] - Z [pk5ikd(ﬁ] = Z [deqj] - Z [pkqu] = 0.
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Thus, we can take Fj(q, @) = 0. Why can we take the generating function to be constant
(which means that p and P are equal to zero)? Because ¢ and @ do not form good
coordinates on phase space; they only cover configuration space. Thus, we have the simple

solution
F2(Q>P) = ZQJ((])PM
J

where we must explicitly insert the expression for ); in terms of ¢. W

(b) Find the generating functions, F}(q, Q) and F5(q, P), for the canonical transformation
of problem 1(b) above.
Solution: Again, we start we the formula

dFi(q,Q) = pdq — PdQ.
Since we want [} in terms of () and ¢, we solve for p and P in terms of () and ¢:
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so that
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Integrating the coefficient of dg (which is aa—I;l) with respect to ¢ we get
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Simply differentiating the above with respect to () and comparing with the coefficient of
d@ shows we can take f(Q) = 0, so we find that
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Now we know that Fy(q, P) = Fi(q,Q(q, P)) + PQ(q, P), so all we need to do is solve for
@ in terms of ¢, P and substitute into the above expression. Using the above expression
for P, we find that
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which gives that
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(c) Explicitly choose a function of two variables, f(x,y). Then obtain the canonical trans-
formations on a 2-dimensional phase space that it generates via the generating functions
(1) Fl(Qa Q) = f(Q7Q) and FZ(Q? P) = f(Q7 P)

Solution: Clearly, your results will depend on what function you choose. I will demon-
strate with two different examples. I will start with my favourite function on R?, namely
f(x,y) =z +y. Then
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This illustrates an important point: even though any function will generate a “canonical
transformation”, there is no guarantee that the resulting functions will be good coordinates
on phase space even if the generating function satisfies every nice property of which you
can think. Next up is slightly more complicated function, f(x,y) = (x + y)?. Then
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Solving for P and @) in terms of p and ¢ gives ¢ = @) and p = P. This is nothing but the
identity transformation. For F, we get
oF oF
Fy(¢,P)=¢"+2P+P* = p=—==2¢q+P) ; Q=—5=2q+P)
dq oP
Solving for P and () again gives () = p and P = p — 2q. So this transformation turns the
momenta into the coordinates and then does a little rearranging on the new momenta. W



