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Problem Set VII Solutions

1) (a) Show that the transformation on 2n-dimensional phase space associated with a coordi-
nate transformation on configuration space, namely:

qi → Qi(q)

pi → Pi(q, p) =
∑

j

pj
∂qj

∂Qi

is a canonical transformation.
Solution: As was shown in class, in order to show that a transformation is canonical it

is sufficient to demonstrate that the new coordinates satisfy the Poisson bracket as functions
of the old coordinates. We first compute the easy bracket:

Ω(p,q) (Qi, Qj) =
n∑

k=1

(
∂Qi

∂qk

∂Qj

∂pk

− ∂Qi

∂pk

∂Qj

∂qk

)
= 0

since the Qi are independent of pi. Next up are the mixed PQ brackets:

Ω(p,q) (Qi, Pj) =
n∑

k=1

(
∂Qi

∂qk

∂Pj

∂pk

− ∂Qi

∂pk

∂Pj

∂qk

)
=

n∑
k=1

∂Qi

∂qk

∂qk

∂Qj

− 0 =
∂Qi

∂Qj

= δij,

as desired. The last equality follows from the fact that the Q are good coordinates on
configuration space so they must obey that relation. Finally, we need to do the P brackets,
which are bit of mess:

Ω(p,q) (Pi, Pj) =
n∑

k=1

(
∂Pi

∂qk

∂Pj

∂pk

− ∂Pi

∂pk

∂Pj

∂qk

)
=

n∑
k=1

((
n∑

l=1

pl
∂2ql

∂qk∂Qi

)
∂qk

∂Qj

− ∂qk

∂Qi

(
n∑

l=1

pl
∂2ql

∂qk∂Qj

))
.

Notice that in the terms involving second partial derivatives, we cannot blithely interchange
order of differentiation because different things are being held fixed. For the q derivatives,
the other q′s are being held fixed, while for the Q derivative it is the other Q′s. Now we
interchange the order of summation and note that

n∑
k=1

∂2ql

∂qk∂Qi

∂qk

∂Qj

=
∂2ql

∂Qj∂Qi

.

Since these are partial derivatives where the same variables are being held fixed, we can
just interchange order of differentiation to yield

n∑
l=1

pl

(
∂2ql

∂Qj∂Qi

− ∂2ql

∂Qi∂Qj

)
= 0,
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as desired. �

(b) On a 2-dimensional phase space, show that the transformation

q → Q = ln[
1

q
sin p]

p→ P = q cot p

is canonical.
Solution: Again, we simply need to check that the new coordinates satisfy the canonical

commutation relations as functions of the old coordinates. The QQ and PP brackets are
trivial because the Poisson bracket is antisymmetric and so vanishes for any function of p
and q. Thus, we just need to check the QP bracket, which is

Ω(p,q) (Q,P ) =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
=

[
−1

q

] [
q(− csc2 p)

]
−
[
cos p

sin p

]
[cot q] =

1− cos2 p

sin2 p
= 1,

as desired. �

2) Give an “elementary” proof of Liouville’s theorem as follows: Introduce local canonical
coordinates (q1, p1, q2, p2, ..., qn, pn) and pretend that these are Cartesian coordinates in 2n-
dimensional Euclidean space, R2n. Consider a bounded region, R, of phase space covered
by these coordinates. Let Rt denote the image of R under dynamical evolution by time t.
Argue that the volume, V (Rt), of Rt must satisfy

dV

dt
=

∫
∂Rt

~h · n̂dS

where ∂Rt denotes the boundary of Rt, ~h denotes the Hamiltonian vector field, and n̂
denotes the unit outward pointing normal to ∂Rt. Then show that dV/dt = 0.

Solution: Consider a volume Rt at a particular time in phase space. Corresponding
to this volume we can construct an ensemble of particles wherein each point in phase space
(q1, p1, q2, p2, ..., qn, pn) contained within the volume corresponds to the state of precisely
one particle in the ensemble. In this case the volume is equal to the number of particles
in the ensemble. If we wish to know the rate of change of the number of particles within
this volume at time t, we must calculate the flux of the particles across the boundary of
the volume of phase space. That is:

dV

dt
=

∫
∂Rt

~̇x · n̂dS (1)

where ~x is the coordinate vector in phase space.
But, Hamilton’s equations of motion are precisely ~̇x = ~h, so we have the result:

dV

dt
=

∫
∂Rt

~h · n̂dS (2)
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Furthermore, the divergence theorem allows us to write this as:

dV

dt
=

∫
∂Rt

~h · n̂dS =

∫
Rt

∇ · ~hd~x (3)

However, we have:

∇ · ~h =
∑

i

∂

∂qi

∂H
∂pi

− ∂

∂pi

∂H
∂qi

= 0 (4)

Therefore dV
dt

= 0

3) (a) Find the generating function, F2(q, P ), for the canonical transformation of problem
1(a) above.

Solution: F2 is given by F2 = F1 +
∑

j PjQj. Thus, we first need to find F1 and then
we can simply compute F2. Now F1 satisfies

dF1 =
∑

j

(pjdqj − PjdQj) =
∑

j

[
pjdqj −

(∑
k

pk

(
∂qk

∂Qj

)
{Q,p}

)(∑
l

(
∂Qj

∂qi

)
{q,p}

dqi

)]

For fixed k and i, we have that∑
j

(
∂Qj(q)

∂qi

)
{q,p}

(
∂qk(q)

∂Qj

)
{Q,p}

=

(
∂qk

∂qi

)
{q,p}

= δik,

so that we get

dF1 =
∑

j

[pjdqj]−
∑
k,l

[pkδikdqi] =
∑

j

[pjdqj]−
∑

k

[pkdqk] = 0.

Thus, we can take F1(q, Q) = 0. Why can we take the generating function to be constant
(which means that p and P are equal to zero)? Because q and Q do not form good
coordinates on phase space; they only cover configuration space. Thus, we have the simple
solution

F2(q, P ) =
∑

j

Qj(q)Pj,

where we must explicitly insert the expression for Qj in terms of q. �

(b) Find the generating functions, F1(q, Q) and F2(q, P ), for the canonical transformation
of problem 1(b) above.

Solution: Again, we start we the formula

dF1(q, Q) = pdq − PdQ.

Since we want F1 in terms of Q and q, we solve for p and P in terms of Q and q:

p = sin−1
(
qeQ
)

; P = q cot p =

√
1− q2e2Q

e2Q
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so that

dF1 = sin−1
(
qeQ
)
dq −

√
1− q2e2Q

e2Q
dQ.

Integrating the coefficient of dq (which is ∂F1

∂q
) with respect to q we get

F1 = q sin−1
(
qeQ
)

+

√
1− q2e2Q

eQ
+ f(Q).

Simply differentiating the above with respect to Q and comparing with the coefficient of
dQ shows we can take f(Q) = 0, so we find that

F1 = q sin−1
(
qeQ
)

+

√
1− q2e2Q

eQ
.

Now we know that F2(q, P ) = F1(q, Q(q, P )) + PQ(q, P ), so all we need to do is solve for
Q in terms of q, P and substitute into the above expression. Using the above expression
for P , we find that

P =

√
1− q2e2Q

eQ
⇒ Q = −1

2
ln
(
P 2 + q2

)
which gives that

F2(q, P ) = q sin−1

[
q√

P 2 + q2

]
+P − P

2
ln
(
P 2 + q2

)
= q cot−1 P

q
+P − P

2
ln(P 2 + q2) �

(c) Explicitly choose a function of two variables, f(x, y). Then obtain the canonical trans-
formations on a 2-dimensional phase space that it generates via the generating functions
(i) F1(q, Q) = f(q, Q) and F2(q, P ) = f(q, P ).

Solution: Clearly, your results will depend on what function you choose. I will demon-
strate with two different examples. I will start with my favourite function on R2, namely
f(x, y) = x + y. Then

F1(q, Q) = q + Q ⇒ p =
∂F1

∂q
= 1 ; P = −∂F1

∂Q
= −1

F2(q, P ) = q + P ⇒ p =
∂F1

∂q
= 1 ; Q =

∂F1

∂P
= 1.

This illustrates an important point: even though any function will generate a “canonical
transformation”, there is no guarantee that the resulting functions will be good coordinates
on phase space even if the generating function satisfies every nice property of which you
can think. Next up is slightly more complicated function, f(x, y) = (x + y)2. Then

F1(q, Q) = q2 + +2Qq + Q2 ⇒ p =
∂F1

∂q
= 2(Q + q) ; P = −∂F1

∂Q
= 2(Q + q).
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Solving for P and Q in terms of p and q gives q = Q and p = P . This is nothing but the
identity transformation. For F2 we get

F2(q, P ) = q2 + 2qP + P 2 ⇒ p =
∂F1

∂q
= 2(q + P ) ; Q =

∂F1

∂P
= 2(q + P ).

Solving for P and Q again gives Q = p and P = p− 2q. So this transformation turns the
momenta into the coordinates and then does a little rearranging on the new momenta. �
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