Dynamics in Stationary, Non-Globally Hyperbolic Spacetimes

Class. Quant. Grav. 21 2651 (gr-qc/0310016)

Itai Seggev

Enrico Fermi Institute and Department of Physics
University of Chicago

GR17, Dublin
July 22, 2004
The Bottom Line

- There always are local solutions to the Klein-Gordon equation.
- In globally hyperbolic spacetimes, there exist global solutions with a host of important properties (below).
- The present work establishes the existence of global solutions to the wave equation in causal, stationary, non-globally hyperbolic spacetimes.
- Further, there is a prescription for assigning solutions to initial data which preserves important properties of the well-posed problem.
(Non-)Global Hyperbolicity

- The domain of dependence $D(\Sigma_0)$ is the set of points p such that every inextendible timelike curve through p intersects Σ_0.
- Globally hyperbolic spacetimes M have a Cauchy surface Σ_0 (for which $D(\Sigma_0) = M$).
Well-posedness

- Global-hyperbolicity guarantees the **well-posedness** of initial value problem for scalar test fields:
 - there is a unique solution throughout spacetime for given initial data,
 - solutions depend continuously on initial data, and
 - smooth initial data produce smooth solutions.

- In stationary spacetimes, solutions also conserve energy.
Non-Globally-Hyperbolic Spacetimes

- In general, non-globally hyperbolic spacetimes have an ill-posed initial value problem.
- The present work shows that a prescription exists in a large class of general stationary (not necessarily static) spacetimes.
Stationary Spacetimes

- (M, g_{ab}) is **stationary** if it has an everywhere timelike, complete Killing vector field t^a.
- Black hole solutions are **not** stationary.
- A **static** spacetime has time-reversal symmetry as well.
Plan of Attack

The general plan is as follows:

1. Construct a suitable Hilbert space of initial data.
2. Convert the PDE problem into a Hilbert space problem.
4. Convert back and show that the result is a sensible PDE solution.
The energy Hilbert space \mathcal{H}_A is the completion of $C^\infty_0(\Sigma) \oplus C^\infty_0(\Sigma)$ in the inner product

$$\langle \Phi | \Phi \rangle := \int_\Sigma d\gamma T_{ab} n^a t^b.$$
Lapse and Shift

Recall that the lapse function α and shift-vector β^a are defined by

$$t^a = \alpha n^a + \beta^a,$$

where $\beta^a n_a = 0$. Note that $-t^a t_a = \alpha^2 - \beta^2$.

$x=0$

β

αn^a

β

β

$t=0$
The Klein-Gordon Equation

- The Klein-Gordon equation is a second order hyperbolic differential equation:
 \[(\nabla^a \nabla_a - m^2)\varphi = 0.\]

- Using the canonical momentum \(\pi = n^a \nabla_a \varphi\), and letting \(\Phi = (\varphi, \pi)\), this equation may be rewritten as a first order system:
 \[\frac{\partial}{\partial t} \Phi = -h\Phi.\]
Properties of h

- h's explicit form is

$$-h = \begin{bmatrix} \beta^a D_a & \alpha \pi \\ D^a(\alpha D_a) - \alpha m^2 & -(D_a \beta^a) - \beta^a D_a \end{bmatrix}$$

- h is a 2×2 matrix operator containing only spatial derivatives.
- The form of h depends on the choice of slicing.
- h, acting on $C^\infty_0(\Sigma) \oplus C^\infty_0(\Sigma)$, is anti-Hermitian in the energy inner product.
Assumptions

- Restrict attention to fields with

\[m^2 > 0. \quad \text{(PosMass)} \]

- It is necessary that the slicing obey

\[\alpha - \frac{\beta_a \beta^a}{\alpha} \geq \epsilon > 0. \quad \text{(NonNull)} \]

This implies that \(\alpha \geq \epsilon \) and \(\alpha^2 - \beta^2 \geq \epsilon^2 \).
The Prescription(s)

1. Start with spacetime possessing slicings which obey (NonNull).
The Prescription(s)

1. Start with spacetime possessing slicings which obey (NonNull).
2. Choose any such slicing and construct the space \mathcal{H}_A.

Recall that $\partial_t \Phi(t, x) = -h \Phi(t, x)$. Choose a skew-adjoint extension h_{SA} of h and use the spectral theorem to define $\Phi_t(x) = e^{-h_{SA}t} \Phi_0(x)$. Notice that Φ_t is defined at every point of space, and the transformation from Φ_0 to Φ_t is unitary.
The Prescription(s)

1. Start with spacetime possessing slicings which obey (NonNull).
2. Choose any such slicing and construct the space \mathcal{H}_A.
3. Define h as above on $C_0^\infty(\Sigma) \oplus C_0^\infty(\Sigma)$.

Recall that

$$\frac{\partial}{\partial t} \Phi(t, x) = -h \Phi(t, x).$$
The Prescription(s)

1. Start with spacetime possessing slicings which obey (NonNull).
2. Choose any such slicing and construct the space \mathcal{H}_A.
3. Define h as above on $C_0^\infty(\Sigma) \oplus C_0^\infty(\Sigma)$.

 Recall that $\frac{\partial}{\partial t} \Phi(t, x) = -h\Phi(t, x)$.
4. Choose a skew-adjoint extension h^{SA} of h and use the spectral theorem to define

 $\Phi_t(x) = e^{-h^{SA}t} \Phi_0(x)$.
Existence of Extension

Theorem I

Let \((M, g_{ab})\) be a stationary spacetime, and consider a minimally coupled Klein-Gordon equation subject to (PosMass). If \((\Sigma_t, \gamma_{ab})\) is a foliation of satisfying (NonNull), then \(h\) possesses at least one skew-adjoint extension. Further, this extension \(h^I\) is invertible.
Properties of Solutions

Theorem II

Assume the conditions of Theorem I hold. Let Φ_0 be smooth data of compact support. If Φ is the solution defined via the prescription for any h^{SA} and Ψ the maximal Cauchy evolution of Φ_0, then

(a) $\Phi = \Psi$ within $D(\Sigma_0)$,

(b) Φ varies continuously with initial data,

(c) smooth data of compact support give rise to smooth solutions, and

(d) Φ conserves energy.
The Static Case

Theorem III

Let \((M, g_{ab})\) be a static spacetime obeying (NonNull) in the static slicing. If (PosMass) holds, then \(h\) is essentially skew-adjoint. Further, the stationary spacetime prescription agrees with a definite prescription in the Wald-Ishibashi formalism for static spacetimes.
Conclusions

- A non-empty class of prescriptions for defining dynamics can be given in stationary spacetimes obeying the mild condition (NonNull).
- Any prescription in this class automatically conserves energy.
- In the static case, there is only one prescription in the class. It corresponds to a definite prescription in Wald’s formalism.
- As an added bonus, linear field quantization is possible.
Open Questions

- Is the extension h^l unique?
- How do the classes in different slicings compare?

In the static case, this formalism can be modified to include all Wald-Ishibashi dynamics. Is something similar true in the general case?