Temporal Difference Learning in the Game of Havannah

Jeffrey Burkert
Brief Intro to TD-Learning

- Supervised learning when current value is unknown.

- Uses a neural network evaluation of optimal future state to learn value of current state.

- Used to great success in creating TD-Gammon and other world class backgammon bots including GNU Backgammon, Snowie, and Jellyfish.
Havannah

- Players take turns marking hexes on a Hexagonal grid.

- Three win conditions
 - Connect two corners
 - Connect three sides
 - Surround one hex
Why Havannah?

- Invented by Christian Freeling in the early 90's

- Challenge
 - $1000 to bot that can beat him by 2012
 - No successful takers

- Board is scalable

- Strongest available bots uses Monte Carlo Tree Search
Why Havannah?

<table>
<thead>
<tr>
<th>ID</th>
<th>Game</th>
<th>State-space</th>
<th>Game-tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Awari</td>
<td>10^{12}</td>
<td>10^{32}</td>
</tr>
<tr>
<td>2</td>
<td>Checkers</td>
<td>10^{21}</td>
<td>10^{31}</td>
</tr>
<tr>
<td>3</td>
<td>Chess</td>
<td>10^{46}</td>
<td>10^{123}</td>
</tr>
<tr>
<td>4</td>
<td>Chinese Chess</td>
<td>10^{48}</td>
<td>10^{150}</td>
</tr>
<tr>
<td>5</td>
<td>Connect-Four</td>
<td>10^{14}</td>
<td>10^{21}</td>
</tr>
<tr>
<td>6</td>
<td>Dakon-6</td>
<td>10^{15}</td>
<td>10^{33}</td>
</tr>
<tr>
<td>7</td>
<td>Domineering (8×8)</td>
<td>10^{15}</td>
<td>10^{27}</td>
</tr>
<tr>
<td>8</td>
<td>Draughts</td>
<td>10^{30}</td>
<td>10^{54}</td>
</tr>
<tr>
<td>9</td>
<td>Go (19×19)</td>
<td>10^{172}</td>
<td>10^{360}</td>
</tr>
<tr>
<td>10</td>
<td>Go-Moku (15×15)</td>
<td>10^{105}</td>
<td>10^{70}</td>
</tr>
<tr>
<td>11</td>
<td>Havannah (19×19)</td>
<td>10^{127}</td>
<td>10^{157}</td>
</tr>
<tr>
<td>12</td>
<td>Hex (11×11)</td>
<td>10^{57}</td>
<td>10^{98}</td>
</tr>
<tr>
<td>13</td>
<td>Kalah(6,4)</td>
<td>10^{13}</td>
<td>10^{18}</td>
</tr>
<tr>
<td>14</td>
<td>Nine Men’s Morris</td>
<td>10^{10}</td>
<td>10^{50}</td>
</tr>
<tr>
<td>15</td>
<td>Othello</td>
<td>10^{28}</td>
<td>10^{58}</td>
</tr>
</tbody>
</table>
Network of TD-Havannah

- **Inputs**
 - One input for each hex, 1 for player 1, -1 for player 2
 - Input set to 1 if player 1 is about to play, -1 otherwise

- One hidden layer with 150 neurons

- Output evaluates the strength of player 1's position
Training the Network

- Enumerate all moves and get network evaluation
- Pick best and backpropagate through the network, possibly multiplying by some factor.

Naive Approach
 - Train through self play
 - Pick best move
 - Leads to improper state space exploration

- Networks trained this way perform very poorly.
State Space Exploration

- Difficult balance needs to be struck.

- Initial solution: random moves
 - Tried letting player select random legal move 20% of time
 - Training through 100,000 games on a 2x2 grid could not solve the game

- Experiment:
 - Train selecting random move 20% but make player 2 a fully random player.
 - Solved 2x2 case in 10,000 games.
State Space Exploration

- Clearly we need to ensure fuller state space exploration

- Solution:
 - Early in training, move essentially randomly
 - As networks improve, move randomly less often

- This is better
 - Can achieve a 98% win percentage against random player on 3x3 board.
 - Often falls into a "steady state" and learning slows
State Space Exploration

- Final solution, base exploration on move strength
- Able to achieve ~100% win rate against random bot
- Still very weak by human standards
 - Loses consistently to me!
What it learned

- Learned that the corner win condition is optimal
- Placed stones in close proximity to each other
- Occasionally is able to block an instant win from the other player
Failures

- Pursues win conditions that are blocked
- Often fails to block instant wins
- No sense of strategy on a more than local scale
- Can't force a win on a 3x3 board
DEMO!
Future Work

- Constrain network based on symmetry of hexagon
- Experiment with network architectures
 - Hidden layers
 - Feature Maps
- Modified training
 - Different randomization procedure