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Abstract

The Cavendish apparatus measures the gravitational attraction between lead weights and

a torsional pendulum to determine the value of G. The temperature near the apparatus

was collected along with torsional pendulum’s position data. The calculated value for the

gravitational constant was 7.03 · 10−11 ± 0.15 · 10−11 m3

kg·s2 . The period of the temperature

oscillation was 2499.9 ± 0.05 s, and this fluctuation causes changes in the position data.

Introduction

In 1797, Henry Cavendish constructed an apparatus to measure the minuscule gravitational

attraction between two masses. In February 2010, Paul Riggins and I replicated the experi-

ment and discovered results of equilibrium position and period varied greatly over time. The

oscillations did not approach zero as the model predicted, but instead reached a vaguely sinu-

soidal state. To conserve of energy, there must have been some energy input to the system.

This experiment tests the hypothesis that the air conditioning cycles in the room perturbed

the system.

Theory

A dumbbell suspended on a torsional fiber and displaced a small angle θ from equilibrium

position will oscillate back and forth. The fiber acts as a torsional spring, governed by the

equation

τband = −κθ (1)
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where θ is the angular displacement from equilibrium and κ is the torsion constant of the fiber.

Two large lead weights of mass m1 attract the dumbbell mass m2 with the force given by the

law of universal gravitation,

F =
Gm1m2

b2
− Gm1m2

4d2 + b2
sinφ =

Gm1m2

b2
− Gm1m2b

(4d2 + b2)
3
2

=
Gm1m2

b2
(1 −A) (2)

where b is the distance between m1 and m2 and A = b3

(4d2+b2)3/2
. This equation accounts for

the attraction felt by each dumbbell mass to the close lead weight and the far lead weight.

This force exerts a torque on the fiber given by

τgravity = 2Fd = 2d
Gm1m2

b2
(3)

where d is half the length of the dumbbell. Combining equations 1 and 3, taking into account

that the sum of all torques acting on the dumbbell must be zero, yields an expression for G:

G =
κθb2

2dm1m2
(4)

A laser is shone on a mirror on the dumbbell and it reflects across the room on a wall. The

laser-mirror system acted as a lever arm to amplify minuscule changes in θ to large position

changes on the wall. Switching the arrangements of the weights resulted in a new equilibrium

position. By measuring change in equilibrium position of the laser on the wall of ∆S, we

calculated the change in equilibrium position

θ =
∆S

4L
(5)

The period of oscillation for a torsional balance is given by

T = 2π

√
I

κ
= 2π

√
2m2(d2 + 2

5r
2)

κ
(6)

where T is the period of oscillation, I is the moment of inertia of the dumbbell ignoring the

mirror and supporting arms, and r is the radius of the small weight. Solving this equation for

κ and combining it with Equations 4 and 5 yields:

G =
π2∆Sb2(d2 + 2

5r
2)

T 2m2
1Ld(1 −A)

(7)

Experiment
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Figure 1: Experiment Setup
The Cavendish experiment uses
the gravitational attraction be-
tween a dumbbell and 2 lead
weights to determine the gravita-
tional constant. A laser reflects
off a mirror on the dumbbell to
amplify small changes in angular
position. A webcam capture data
efficiently and accurately.

The dumbbell was offset from equilibrium with the weights

in one position, and the experiment was allowed to run for

several hours before the weights were shifted to the other

position. Instead of manually recording data, a webcam,

shown in Figure 1, was used to automate data acquisition.

The computer was able to sample 3 times a second, and

more importantly, was able to record data overnight. Pre-

vious experimentation indicated that far more than 2 peri-

ods were necessary for an accurate determination of equi-

librium position. Python software analyzed each webcam

image and identified any pixels within a set distance of the

laser color, and it found the mean and standard deviation of

the X coordinates of these pixels. A linear mapping exists

between pixel position and the laser’s position on the wall,

determined through calibration. Any time the webcam was moved, the leftmost and rightmost

wall coordinates in the webcam’s field of view were entered into the software to compute this

mapping. Thus, data runs taken without moving the webcam will have accurate relative posi-

tion. The computer had far better time resolution than the webcam had position resolution,

so time error was ignored. In addition, a USB thermometer took temperature readings of air

directly around the apparatus every 5 seconds. It was located on the air-conditioning vent side

of the apparatus. The thermometer had poor temperature resolution and was not calibrated,

but for the purposes of this experiment, only relative temperature changes were important.

The software Hid TEMPer was used for temperature data acquisition.

Results

Figure 2: Long-term Behavior
After some initial erroneous data, our data starts
sinusoidally and shows the exponential decay enve-
lope. As the amplitude decreases, the underlying
noise is revealed. The shift in equilibrium position
at 23,000 seconds is the result of the movement of
weights from position 1 to position 2.

The raw data, the laser’s position and

the apparatus’ temperature over time

are shown in Figure 2. The initial os-
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cillations are erroneous, resulting from

the dumbbell moving with so much en-

ergy as to bounce against the walls of the

apparatus container instead of behaving

as a torsional balance. At around 4,000

seconds, the dumbbell dissipates enough

energy to behave normally. The curve is

sinusoidal since it’s a torsional balance,

and decays exponentially due to damping in the torsional fiber. At around 23,000 seconds, the

weights were moved from position 1 to position 2, resulting in a shift in equilibrium position.

Figure 3: Left Weight Forward
Fitted curve to the data between 4,000 and 22,000
seconds. The damped sinusoid fits the data initially,
but it does not explain why the oscillations don’t die
down.

Several graphs were used to fit this

data over different time ranges. Period

data is more accurate where the sinu-

soid’s amplitude is high, but equilibrium

position data is more accurate when the

amplitude is low. The fit used was an

exponentially decaying sinusoid:

x(t) = x0 +Ae−t/τsin(2πt/T1 + θ1) (8)

where x0 is the equilibrium position, A is the amplitude of the exponential decay envelope,

τ is the decay parameter, T1 is the period, and θ1 is the phase. One of the graphs is shown

in Figure 3. The damped sinusoid fits the data well at first, but it’s insufficient to explain

the continued oscillations after 12,500 seconds. The mean and standard deviation for the fit

parameters were computed. The damping coefficient τ was 2170 ± 20 s, and the period T was

508.0 ± 0.2 s. For the left weight forward, the equilibrium position was 0.81621 ± 0.00002 m,

and for the right weight forward, and the right position was 0.65629 ± 0.00005 m. These

numbers were consistent over different time ranges. These parameters yield a value for G of

7.03 · 10−11 ± 0.15 · 10−11 m3

kg·s2 . The experimentally determined value of G was two standard

deviations away from the accepted value. This could be caused by the temperature effect or a
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nonlinear mapping of pixels to X positions in the webcam.

Temperature’s effect on the dumbbell’s motion was determined through Fourier analysis.

To remove the DC offset from the Fourier spectra, both the position and the temperature

datasets were centered around zero. The position data was not taken at constant time intervals,

so it was interpolated using the smoothing-spline method. Neither signal was intended to be

periodic, but the FFT requires periodicity, so a Hanning window was applied to both datasets.

Figure 4: Fourier Analysis of the Temperature
The top plot shows the spectrum of the tempera-
ture signal below. The range of the graph is the
entire experiment. The peak at 0.4 mHz reflects the
temperature’s periodicity every 2500 seconds.

The results of the Fourier analysis of

the temperature data is shown in Fig-

ure 4. The magnitude squared is plot-

ted on a log plot for each Fourier coef-

ficient. The only significant component

of the temperature spectrum is the peak

at 0.4 mHz. The frequency resolution of

a Fourier transform is 1
Ts

where Ts is the

length of the signal, so the shown spec-

trum has a resolution of 0.02 mHz. The

resulting period, 2500 ± 130 s is a rea-

sonable timescale for an air-conditioning cycle.

Figure 5: Fourier Analysis of the Position
The magnitude squared of each Fourier coefficient
is plotted on the top graph. The original signal is
shown below. The 1.88 mHz component corresponds
to a period of 532 seconds, close to our measured
value. The other peaks at 0.4 and 0.8 mHz are a
result of temperature fluctuations.

For the position data, shown in Fig-

ure 5, the peak at 1.88 mHz resulted

from the characteristic period of the tor-

sional dumbbell in the Cavendish appa-

ratus. This position spectrum has a res-

olution of 0.04 mHz; thus, the 1.88 ±

0.04 mHz peak corresponds to a period

of 532 ± 12 s, close enough to the pe-

riod computed by fitting the position

data to a damped sinusoid. Two other

5



peaks occurred at 0.4 ± 0.04 mHz and

0.8 ± 0.04 mHz; the first is at the same frequency observed in the temperature spectrum, and

the second is its harmonic. Similar frequency components were found in the data from the left

weight forward as well.

The shared frequency component is strong evidence that temperature fluctuations mani-

fested themselves in the dumbbell’s movement. The temperature’s effect does not appear to

be due to metal expansion. The dumbbell’s moment of inertia would only change by 0.005%

over the range of temperatures observed. The torsional spring constant is even less effected by

temperature. When the temperature increases, the increased radius of the beryllium copper

wire is mostly canceled by a decrease in the modulus of rigidity. The most likely explaination

is that environmental temperature variations created temperature differences within the appa-

ratus. One side of the apparatus faced the air conditioning vent, while the other faced a wall.

This temperature difference caused air currents that affect the dumbbell.

Figure 6: Including Temperature in the Fit
Including temperature’s additional affects yielded a
graph that better fit the data, although this model
doesn’t account for the oscillations of period 500 s
after the initial envelope decay. The fit shows that
the period of the air conditioning cycles is 2499.9 ±
0.05 s, and their amplitude is roughly 5 mm.

The nature of the FFT does not al-

low for accurate determination of the pe-

riod of air conditioning cycle. However,

we can update our model of the system

to include the temperature fluctuations.

From Fourier analysis, that there should

be a sinusoidal component with a period

near 2500±130 s. The results are shown

in Figure 6. The model is an improve-

ment, but it is far from perfect. An expo-

nentially damped sinusoid cannot model

this because it can’t account for ampli-

tude increases provided by temperature.

An improved model would be

x(t) = x0 + (Ae−t/τ +B)sin(2πt/T1 + θ1) + Csin(2πt/T2 + θ2) (9)

6



where C is the amplitude of the variations caused by temperature, T2 and θ2 are their period

and phase, and B is minimum oscillation in the exponential decay envelope. This appears

to coincide with observation: the oscillations initially decay exponentially, but they reach

an equilibrium level where energy lost to damping equals the energy gained by temperature

differences. However, this curve does not fit the data well because the period of these low-

amplitude oscillations varies much more than it does for higher amplitude motion.

While the model used in Figure 6 ignores the 2 mHz components at high t, it does reveal

information in its fit of the 0.4 mHz temperature oscillations. It pegs their period at 2499.9±

0.05 s, which makes sense if the cooling system is on a timer. The amplitude of the temperature

oscillations is 5.300±0.001 mm, large enough to be nonnegligable overnight. Someone recording

only two periods of data for 1020 seconds could be anywhere in the 2500 second air conditioning

cycle, so their equilibrium position values would only be accurate to 5 mm. All errors aside,

this equilibrium position error would contribute to a 5% error in the calculation of G. It is

unknown how the temperature cycle has similar effects during the daytime.

Conclusion

A value for the gravitational constant of 7.03 · 10−11 ± 0.15 · 10−11 m3

kg·s2 was calculated. At

least part of the error can be attributed to temperature - the benefit of an undisturbed lab

for a long period of time comes with the cost of a devious air-conditioning system. Conclusive

evidence was found linking temperature variations in the air around the Cavendish apparatus

to the dumbbell’s angular position. Chaotic behavior bars fully modeling the low-amplitude

oscillations provoked by temperature differentials. New investigation into the relation between

Cavendish temperature and torsional oscillation could be explored in several ways. More

effective image processing would include a red filter and a blob detection algorithm. Inducing

large heat variations with a heat gun should provoke an increased response that could be

measured. Alternatively, enclosing the experiment in a metal box should reduce heat variations

and improve the accuracy of the experiment.
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