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Abstract

The index of refraction of helium gas was measured by recording the
number of fringes traversing the output of a Michelson interferometer
as the helium pressure in an optical cell increased. The LabView code
was extended to use a remote clicker to more accurately identify the
pressure in the chamber. Using an algorithm to compute the number
of fringes between data points, the index of refraction of helium was de-
termined to be 1+(36.01±0.06)×10−6. The relation between pressure
and time was determined to correspond closely to that of compressible
isothermal flow. Using the additional pressure data and a new Fourier
transform analysis, more accurate results for the index of refraction of
helium, 1 + (35.98± 0.05)× 10−6 were determined.

1



Contents

1 Experimental Setup and Theory 3

2 The Index of Refraction of Helium 5
2.1 Experiment Adjustments . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 LabView Modifications . . . . . . . . . . . . . . . . . . 5
2.1.2 Python Digital Signal Processing . . . . . . . . . . . . 6

2.2 Data and Results . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Investigating the Pressurization of the Cell 10
3.1 Theory of Pressure Drop Along a Pipe . . . . . . . . . . . . . 10
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Fourier Data Analysis 13
4.1 Pressure Domain Theory . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Non-Mathematical Overview . . . . . . . . . . . . . . 13
4.1.2 Mathematical Analysis . . . . . . . . . . . . . . . . . . 15
4.1.3 Fourier Transforms in Pressure . . . . . . . . . . . . . 15
4.1.4 Choosing Sinusoidal Fitting or Fourier Transforms . . 17

4.2 Coding the Resampler . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Helium Results . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Air Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.1 Sinusoidal Fitting for Air . . . . . . . . . . . . . . . . 19
4.4.2 Fourier Transform Code . . . . . . . . . . . . . . . . . 20
4.4.3 Fourier Transform Results for Air . . . . . . . . . . . 21

4.5 Fourier Transform Results for Helium . . . . . . . . . . . . . 22

5 Conclusion 22

6 Graphics 24
6.1 Helium Fringes vs. Pressure . . . . . . . . . . . . . . . . . . . 24
6.2 Air Pressure vs. Time . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Helium Pressure vs. Time . . . . . . . . . . . . . . . . . . . . 32
6.4 Helium Fringes vs. Pressure . . . . . . . . . . . . . . . . . . . 36
6.5 Air Fringes vs. Pressure . . . . . . . . . . . . . . . . . . . . . 39
6.6 Fourier Transform of Air . . . . . . . . . . . . . . . . . . . . . 41
6.7 Fourier Transform of Helium . . . . . . . . . . . . . . . . . . 46

7 Code Appendix 50
7.1 process.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 smooth.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 pressure resample.py . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 fourier transform.py . . . . . . . . . . . . . . . . . . . . . . . 61

2



1 Experimental Setup and Theory

A Michelson interferometer generates a circular interference pattern from an
incident laser source. The pattern’s bulls-eye shape results from construc-
tive interference from light that traveled an integral number of wavelengths
longer or shorter in the translatable arm than the fixed arm, and the de-
structive from light that traveled a whole number and a half wavelengths
longer or shorter in the translatable arm than in the fixed. From counting
the fringe signal’s passing minima and maxima, small changes in the optical
path length can be measured.

The experimental setup is shown in Figure 1. A laser of known wave-
length is used as our light source. A hollow cell of known length is inserted
in one of the interferometer’s paths. This cell is attached to two valves and
a pump that allow gas to be added or removed. Moving one of the mirrors
a distance D from equal path length causes a number of fringes m to pass:

m =
2D

λ

where λ is the wavelength of the laser and the factor of 2 is because light
transits the distance twice. While neither mirror is physically moved, in one
arm, the beam is forced through a cell with length d with index of refraction
n, yielding:

m =
2d(n− 1)

λ

Photodetector

Beam Splitter

Cell

Fixed Mirror

Fixed Mirror

Valve

Helium
or Air

Vacuum
Pump

100 Hz
ADC

Laser

Figure 1: Setup - A vacuum cell is placed along one path of a Michelson
interferometer. Changing the pressure of gas in the cell alters path length,
generating interference fringes that are recorded by the photodetector and
analog to digital converter.
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To change the index of refraction, we change the pressure. The index of
refraction n is dependent on pressure P , so the formula becomes

m =
2d (n[P ]− 1)

λ

For shorthand, n will be used instead of n[P ]. Values for the index of refrac-
tion are quoted at atmospheric pressure P0. The index of refraction minus
one is proportional to the pressure, so

n− 1 = α
P

P0
(1)

where α is the proportionality constant. The index of refraction is defined
to be one in a vacuum, where P = 0, which is satisfied by our formula. The
index of refraction at atmospheric pressure is the quantity of interest:

n[P0]− 1 = α

Substituting our definition of n from Equation (1),

m =
αP · 2d
λP0

Substituting in α,

m =
(n− 1)P · 2d

λP0

Now, all variables are fixed except P and m, so changing one changes the
other.

∆m =
(n− 1)∆P · 2d

λP0

Rearranging terms,

n− 1 =
∆m

∆P

λP0

2d
(2)

The objective of the experiment is find the number of fringes m at various
pressures P . A plot of m vs. P has a slope of ∆m/∆P , which by Equation
(2) is proportional to the index of refraction. The counting of the fringes is
accomplished by centering the photodiode on the circular fringes and digi-
tizing the intensity. Interrupting the laser with an index card at intervals
of equal pressure tags the fringes with marks equally spaced in pressure.
For this paper, these intervals of equal pressure are referred to as “isobaric
intervals” 1. The fringe intensity sampled at isobaric intervals is referred to
as “isobaric data”. Counting the cumulative number of fringes that have
passed from the first isobaric data point to each of the rest yields values for
m at different P .

1Not to be confused with a system at constant pressure!
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2 The Index of Refraction of Helium

2.1 Experiment Adjustments

The largest change in the procedure is ensuring that helium is the only gas
within the chamber. Since its index of refraction (minus one) is one tenth
that of air, a small amount of air can tamper with results. The vacuum
pump can lower the pressure in the chamber to around 8 mmHg, and the
system pressure can be safely raised to 800 mmHg. Thus, one ”flush” of the
system, which consists of evacuating as much of the air as possible and filling
it with helium, removes roughly 1 − 8/800 = 99% of the air, assuming the
helium in the tank is pure. Repeating this process 5 times results in nearly
pure helium. In addition, the system was left at a near-vacuum state for ten
minutes, and there was no noticeable change in pressure, so leakage is not a
concern.

The given procedure is effective for measuring large indices of refraction,
like that of air, but it has some flaws. Firstly, in order to mark the chamber
pressure, a mark is made by interrupting the laser beam, but this interrupts
valid data as well. In addition, a human can only determine the position of
an interruption within a fringe period to 1 part in 16. This is insufficient
to measure the refractive index of helium. In addition, the computer can
use precise algorithms to determine fractional wavelength, and they have
the advantage of being consistent; i.e, if it consistently overestimates the
fractional wavelength, that contributes only to the offset of the m vs. P
graph, not its slope. Computers can record a click with better resolution
than an experimentalist can wave an index card, and it requires less effort
on the experimentalist. A factor of 10 to 20 more pressure data points
can be acquired. The computer can process the data rapidly and generate
plots to ensure that the algorithm is working properly. These adjustments
require altering the existing LabView code and writing processing software
in Python.

2.1.1 LabView Modifications

The LabView code was modified to save a list of data points when a key-
board or slide advancer key is pressed. Since the sample rate is 100 samples
per second, the time in seconds of any press is equal to its data point index
divided by 100. The average click is represented by 5-8 samples, correspond-
ing to 0.05-0.08 seconds. This is much more responsive than the previous
method. The clicker used does not register a small fraction of the clicks
(roughly 1 in 50), but this is corrected for in the signal processing. It is not
known whether this is a hardware problem in the clicker, an error in the
wireless transmission, or a software issue.
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2.1.2 Python Digital Signal Processing

The processing code was written in Python; the code can be found on Pages
50 through 57. After parsing the data files, the average of consecutive press
points is taken to determine when keys were pressed. An algorithm checks to
see if any clicks appear to be missing, using the fact that the time between
clicks is roughly linear. If a gap is found, the algorithm will guess the skipped
click occurred halfway between the clicks on either side. This method will
fix any single missing point, but will fail when multiple points are skipped
in a row.

As Figure 2 shows, the raw data is too noisy to directly compute the ex-
trema or m. The data is smoothed by convolving it with a Hanning window.
The window’s time length is proportional to the amount of smoothing. A
convolution method has the advantage of not shifting the smoothed data in
time. Before finding the extrema, heavy smoothing (8 seconds time length)
is applied to the raw data (see Figure 3). Insufficient smoothing can result
in false extrema locations, but heavy smoothing makes the extrema loca-
tions more accurate with no negative consequences. After all, smoothing is
simply a low-pass filter, and the fringe period is far to large to be negatively
affected. A simple search algorithm determines the locations of the minima
and maxima on the smoothed signal.

Next, the number of fringes between isobaric data points is determined;
this array is summed cumulatively to calculate the number of extrema for
each pressure. The result is shown in Figure 5. To iron out some of the
photodetector fluctuations on a small time scale, very light filtering (0.35
seconds time length) is applied (see Figure 4).

There are two methods of determining the number of fringes between
extrema. One, called X, works in the horizontal direction; the other, Y,
works in the vertical direction. The X method computes the fraction F of
the point P ’s horizontal location in x (time) compared to the horizontal
location of the neighboring extrema, En and En+1:

Fx =
P.x− En.x

2En+1.x− En.x)

For the X method, since only the horizontal locations are used, it does not
matter whether En and En+1 are a minima and a maxima, or a maxima and
a minima.
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Figure 2: Raw Data - The raw fringe intensity recorded by the detector
over time. The noise at the beginning and the end is the result of opening
and closing the intake valve, respectfully. The data is too rough to directly
find the minima and maxima. In addition, the data is too noisy to use it to
find m.

Figure 3: 8-Second Smoothing Data - Data after applying heavy smooth-
ing. This is only used to accurately find the maxima and minima, not to de-
termine the index of refraction. With data this smooth, the extrema-finding
algorithm becomes simple. Care was taken to ensure that the smoothing did
not delay the data in time.

Figure 4: 0.35-Second Smoothing Data - Data after applying slight
smoothing to raw data. This makes the data less noisy, and the resulting
values for m more linear when plotted against pressure.
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The Y method calculates the horizontal position by using vertical direc-
tion y (voltage) with some simple trigonometry:

Fy =
1

4
± 3

2π
arcsin

(
2P.y − En.y − En+1.y

2(En+1.y − En.y)

)
The plus sign is chosen when En is a minima and En+1 is a maxima, and
the minus sign when the opposite is true.

The X method is inaccurate when the fringe period is changing rapidly,
while the Y method is not affected by the fringe period. The Y method
depends on the maximum intensity being constant over time, and it is less
accurate near extrema due to the inverse sine function, but the X method
does not have these limitations. From experimentation, the Y method works
best with air, when there are lots of fringes and thus a plethora of vertical
data, and the changing fringe period leaves the X method inaccurate. The
X method works better for helium, though, because there are fewer fringes.
Both methods have weaknesses, but the mean difference between the X and
Y method:

1

N − 1

N−1∑
n=1

|Fx − Fy| (3)

is a very conservative estimator of the algorithm’s effectiveness; results show
it is 1 part in 30, roughly twice as accurate as a human. While these methods
may be better than manual estimation, but as they are still non-ideal, there
is still benefit from verifying their effectiveness or circumventing their use.

2.2 Data and Results

The charts of pressure versus fringes are shown in Figures 8, 9, 10, 11, 12,
13, 14, and 15. Each chart is the result of five evacuations and fills followed

Figure 5: Final Result - The 0.35-second smoothed data overlayed with
identified extrema (red) and isobaric data points (green). In this case, the
first and last extrema locations are inaccurate, so X-method calculations
would only be valid between indices 2,000 and 13,500.
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Table 1: The index of refraction of helium was determined to be 1.00003601
± 0.00000006. The Len column shows how long each data run took, in
seconds. Most runs were taken over the course of 5 minutes, with a few taking
closer to 10 minutes. In one run, at 14:42, the cell was pressurized much
more rapidly, in less than 3 minutes, and its calculated index of refraction is
significantly different from the others. This difference is likely attributable
to inaccuracies introduced when rapidly taking data. Values for the index of
refraction were calculated with and without this outlier, but it is excluded
from the final result. All indices of refraction are expressed at atmospheric
pressure at 0◦ C, not the temperature at which they were measured

The Index of Refraction of Helium

Day Time Temp (C) Len (s) (n-1)×10−6

1
13:30 21.2 290 36.13
16:36 21.7 701 36.19

2

14:11 20.0 324 35.85
14:19 20.6 314 35.78
14:28 21.2 352 36.05
14:42 21.4 157 35.11
14:55 21.5 641 35.98
15:06 21.5 506 36.06

Average - All 35.89 ± 0.12

Average - No Outlier 36.01 ± 0.06

by one slow fill where data is recorded. The error bars on the data are
not uncertainties calculated from a standard deviation; unfortunately, it is
difficult to combine data from different runs since the temperature changes.
The error bars are the result of Equation (3); they were added to judge
the effectiveness of X and Y methods of determining m. As such, the error
bars, the reduced χ2 values, and the uncertainties on the fitting parameters
have no statistical meaning. In general, the linear fits matched the data
well, with one exception: the short data run. The length of the data run
is determined by the position of the needle valve that lets gas in. An open
needle resulted in rapid pressurization of the cell, noisier data (see Figure
13), and an erroneous value for the index of refraction of helium. This data
run is excluded from the calculated index of refraction of helium. At the
other extreme, the longest data run, in Figure 9, shows patterned residuals
that may be the result of thermal drift over time or other longer-term effects.

The results are shown in Table 1. The uncertainty in the index of refrac-
tion comes from the standard error from the seven data runs. The data from
the first day was not statistically different from the data from the second day,
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so the results were combined. There is certainly no consensus in previous
results, as seen in Figure 6. In fact, there seem to be two distinct camps of
results, one near 34.75, and the other near 36.0. This new data is the most
precise value seen, possibly due to the new methods of data analysis and the
acquisition of seven data runs instead of the standard five.

3 Investigating the Pressurization of the Cell

Collecting information via computer yielded extra information about the
pressure inside of the cell over time. With hundreds of pressure data points
spaced at intervals of 5 mmHg, it becomes possible to see whether the actual
data matches theory. If so, a curve of best fit of pressure over time can
be computed, which potentially averages out the random error inherent in
clicking a button at equal-pressure intervals.

3.1 Theory of Pressure Drop Along a Pipe

Here, an attempt is made to derive the theoretical pressure in the cell over
time. In order to simplify the theory, a few assumptions must be made. The
flow is isothermal because the experiment is not insulated and is exposed to
the ambient environment, and no mechanical work is done on or by the gas.
The gas is ideal, which is a good assumption for air at atmospheric pressure,
and it is even better for lighter gases like helium and gases at low pressure.
The friction factor is constant, and the pipe is straight and horizontal. Then,

Figure 6: There is little consensus within Harvey Mudd regarding the index
of refraction of helium. However, this new data, along with that of two other
students, agrees with literature values near 36.
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the equation for compressible isothermal flow is

w2 =
Dρ1A

2

fL

p2
1 − p2

2

p1

where w is the average mass flow rate, p1 and p2 are the pressures at the
beginning and end of the pipe, ρ1 is the gas density inside the gas reservoir,
f is the friction factor, L is the pipe length, D is the pipe diameter, and A
is the cross-sectional area2. By the ideal gas law,

PV = nRT =⇒ dP

dt
∝ dn

dt

and the mass flow rate w divided by the molecular mass m is the molecule
flow rate, or

w

m
= n =⇒ dw

dt
∝ dn

dt

Combining constants,

w2 ∝ p2
1 − p2

2

p1
=⇒ w ∝

√
p2

1 − p2
2

p1

so

dP

dt
∝

√
p2

1 − p2
2

p1

giving us our differential equation, with P0 as the outside pressure and P as
the cell pressure,

dP

dt
= C1

√
P 2

0 − P 2

p1

Solving this differential equation,

P = P0 sin

(
C1t+ C2√

P0

)
(4)

At first glance, this periodic solution seems nonsensical, since thermodynam-
ics states that the system will never move away from equilibrium. However,
if the solution is plugged back into the differential equation,

cos

(
C1t+ C2√

P0

)
=

√
cos2

(
C1t+ C2√

P0

)
2From http://www.pipeflowcalculations.com/pipeflowtheory/pressure-drop-equation-

in-isothermal-flow.php
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which occurs only when
C1t+ C2√

P0
<
π

2

Solving for t and plugging that value back into the solution, it is seen that
the solution only applies when 0 ≤ P ≤ P0. Since this is the region of
interest, the solution holds.

3.2 Results

The experiment pressure data was fit to the theoretical prediction; firstly,
the data taken during the second experiment, when the index of refraction
of air was determined, was used. The plots for air data are shown in Figures
16, 17, 18, 19, and 20. For all but one graph, the model is a very good
fit. The pressure data does not have associated uncertainty, since each data
point is a single measurement, so the reduced χ2 values are meaningless,
but the residuals are small, and a value of P0 = 750 mmHg is obtained,
which is close to atmospheric pressure. Every plot has identically-patterned
residuals, but there aren’t enough data points to draw serious conclusions.

Fortunately, the helium pressure data has an order of magnitude more
points than its air counterpart. The plots are shown in Figures 21, 22, 23,
24, 25, and 26. The data fits the data incredibly well, with residuals under
5 mmHg in nearly all cases; this is even more impressive because over a
hundred data points were taken, and the pressure dial’s tick resolution is
5 mmHg. One oddity is that the calculated P0 is around 900 mmHg, but
theoretically it should be around 1250 mmHg3. This could be a result of the
fit not working as well at high pressures, or perhaps there is an issue with
the helium regulator.

The most interesting feature of all but one of these graphs is they share
the same patterned residuals as the air graphs. The residual pattern looks
like 80% of a sinusoid. The fact that it is present on nearly every graph sug-
gests that there is either an issue with the model, or there is an issue with
the experiment. There were no blatant assumptions in the model, and the
data conforms so well to the fit, that it is unlikely that there is an issue with
the model. The residuals are so similar that they’re unlikely to be caused by
thermal fluctuations. After examining several causes, it has been hypothe-
sized that the residuals are an artifact of a tall experimenter looking down on
the setup, an effect dubbed “perspective error”. At low pressure, when the
needle is facing southwest, a tall experimenter reads a slightly lower value
than is actually there. The effect reverses at medium pressure, about 400
mmHg, where the needle is vertical. The needle continues clockwise until
it’s vertically down near 800 mmHg. The geometry of the setup suggests

31250 mmHg ≈ 1 atmosphere + 10 psi
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that an experimentalist’s constant head position looking at a needle spin-
ning around a dial would yield residual errors that were sinusoidal and of a
magnitude comparable to what is seen in the results. The final mystery is
why Figure 24 on Page 34 has completely flat residuals; this was the data
point excluded from the value of the index of refraction of helium because
the data was taken so quickly. It’s possible that the needle was spinning so
rapidly, the experimenter leaned in close to see when it was passing pressure
points, which could eliminate the perspective error. Additional testing is
necessary to verify this hypothesis.

4 Fourier Data Analysis

It has been demonstrated that there is a way to accurately find pressure
over time from experimental data. This data can be used to obtain more
accurate values for the index of refraction of air.

4.1 Pressure Domain Theory

4.1.1 Non-Mathematical Overview

Figure 7 visualizes the non-mathematical concepts of the old method, which
will hereafter be referenced as time-domain analysis, and the new tech-
nique, which is called pressure-domain analysis. Recall that the time-domain
method involved marking a small number (around 150, ∆P = 5 mmHg) of
equally-spaced-in-pressure points using an automated clicker, or worse, in-
terrupting the laser beam to take an even smaller number (around 15, ∆P =
50 mmHg) points. These points are used to sample the time-domain fringe
intensity signal, keeping tens or hundreds of fringe amplitudes out of tens
of thousands recorded by the analog to digital converter. The experimenter
can manually estimate the fractional position of each point in the fringe,
or the computer can do so digitally, but neither procedure is accurate nor
precise. Recall that the slope of the number of fringes vs. pressure plot
yields a result proportional to the index of refraction of air. There are two
reasons pressure-domain analysis is more effective: doesn’t throw out over
99% of the fringe data4, and it avoids the fuzzy procedure of determining
the number of fringes between isobaric data points outlined in Section 2.1.2
on Page 6.

The pressure-domain method uses the equation relating time to pressure
(Equation 4 on Page 11) to fit the pressure data over time. This information
is used to sample the fringe intensity linearly in pressure, keeping the huge
amount of fringe intensity data recorded and putting it to use - the frequency

4At best, the sampling keeps hundreds of data points out of tens of thousands
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of fringe intensity spaced linearly in pressure is also proportional to the index
of refraction. This frequency can be found by fitting the data to a sinusoid,
or by taking its Fourier transform.
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Figure 7: Technique - Originally, an analog to digital converter samples the
fringe intensity (upper left, blue line) linearly in time with a large number
of data points (over 9000), and the experimenter records a small number (15
normally, or 150 if the automated clicker is used) of points equally spaced
in pressure (red dots). Then, the position of each red dot along the fringe
is estimated, and the result is plotted on the upper right. The slope of
this line, as shown in Equation 2 on Page 4, is proportional to the index of
refraction. Alternatively, the equation correlating pressure and time (Equa-
tion 4 on Page 11) could be fit to the pressure data and used to sample the
fringe intensity linearly in pressure, shown in the lower middle figure. The
frequency of this sinusoid, which has units of fringes per pressure unit, is a
factor of 2π different from the slope of the line in the upper right-hand plot.
The upper-middle plot is the version of lower-middle plot, but with a small
number of points as opposed to a large number. As opposed to calculating
the obscure fringe fraction in the original method, the new method involves
simply calculating the frequency of a sine wave. This can be done through
data fitting or a Fourier transform.
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4.1.2 Mathematical Analysis

The fringe intensity of a non-ideal Michelson interferometer is given by the
equation

I = Imax cos2

(
2π

λ
(L1 − L2) + φ

)
+ Imin

where λ is the laser wavelength, L1 and L2 are the fixed and movable path
lengths, and φ a phase term added because the equal-path length position
can be anywhere in the fringe. Remember that Equation 1 on Page 4 stated

L1 − L2 = 2 (n− 1) d
P

P0

so the intensity relation, now a function of pressure, becomes

I[P ] = Imax cos2

(
4πd

λP0
(n− 1)P + φ

)
+ Imin (5)

If the data is fit to a curve,

I[P ] = Imax cos2 (CP + φ) + Imin

where C is a constant, then the index of refraction can be found:

n− 1 = C
P0

4π

λ

d
(6)

Note that C is related to the slope ∆m/∆P from the linear fit in the old
method by the equation:

C = 2π
∆m

∆P
(7)

Using a trigonometry identity, cosx2 = (1 + cosx)/2, we can also fit to the
curve

I[P ] = Imax
cos(2CP + 2φ) + 1

2
+ Imin (8)

4.1.3 Fourier Transforms in Pressure

Once the fringe intensity is resampled to be equally spaced in pressure, the
sinusoid’s period must be found. This can be found with a Fourier transform
or by fitting the data to Equations 5 or 8. In order to determine which to
use, Fourier transforms in pressure space must be investigated. Any function
f [x] defined for −L < x < L can be written as

f [x] = a0 + 2
∞∑
n=1

an cos (nx) + 2
∞∑
n=1

bn sin (nx)
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where

an =
1

L

∫ L

−L
f [x] cos (nx)dx

bn =
1

L

∫ L

−L
f [x] sin (nx)dx

If cn is defined as an - bn when n > 0 and c†−n when n < 0, then the series
can be rewritten as

f [x] = a0 + 2
∞∑
n=1

an
(
einx + e−inx

)
+
bn
i

(
einx − e−inx

)
=

∞∑
n=1

(an − bn) einx + (an + bn) e−inx

=
∞∑

n=−∞
cne

inx

(9)

Since I[P ] is also a function, it can be expressed as a Fourier series:

I[P ] =
∞∑

n=−∞
cne

inP

Let the intensity data have N terms at pressures from Pmin to Pmax, a range
of Prange = Pmax − Pmin. The data is equally spaced at pressure intervals
of Prange/N . With a finite number of terms N in the pressure data, a close
approximation is made instead. First it is noted that I can be thought of as
a function of pressure, or as “the n’th element of the intensity array” In, so

I

[
Pmin +

Prange

N
n

]
= In

Thus, the approximations become

Cn ≈
N−1∑
k=0

Ike
ink

I[P ] ≈ 1

N

(N−1)/2∑
n=−(N−1)/2

Cne
2πinP/Prange

where the 1/N factor in the cns was moved from the Cns to I[P ]. The critical
achievement is that the top equation is simply the discrete Fourier transform
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of the intensity, which is easily computed! Now, if this is rewritten in the
form of Equation (8),

I[P ] =
1

N

(
C0 + Cnmaxe

2πinmaxP/Prange + C−nmaxe
−2πinmaxP/Prange

)
(10)

where nmax is the index of the peak intensity in the Fourier spectra. We can
rewrite Equation (8) as

I[P ] =

(
Imin +

Imax

2

)
+

(
Imax

4
e2iφe2iCP

)
+

(
Imax

4
e−2iφe−2iCP

)
Comparing this with Equation (10), the Fourier coefficients are related to
physical parameters:

|Cnmax |
N

=
Imax

4

C0

N
= Imin +

Imax

2

C =
πnmax

Prange

Solving the equations for the variables of interest,

Imax = 4
|Cnmax |
N

(11)

Imin =
C0

N
− Imax

2
=
C0 − 2|Cnmax |

N
(12)

C =
πnmax

Prange
(13)

As a recap, taking the Fourier transform of intensity data equally spaced
in pressure yields a coefficient vector. The index of the maximum element,
nmax and its value Cnmax are found, and from these values, all variables of
interest can be derived, including C, which is proportional to the index of
refraction (Equation 6).

4.1.4 Choosing Sinusoidal Fitting or Fourier Transforms

Now, two different ways are available to calculate the value C from intensity
data - sinusoidal fitting, or the Fourier transform. The Fourier transform
method is limited by the resolution of the peak specified nmax. The peak
index is just the closest integer to the “true” value, so the uncertainty on
nmax is 1/2. Thus the uncertainty on C is given by

∆C =
π

2Prange
(14)
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The experiment uncertainty can be defined as

Uncertainty =
∆(n− 1)

n− 1
=

∆C

C
=

π
2Prange

2π∆m
∆P

=
1

4Prange
∆m
∆P

=
1

4m

where Equation 7 was used for C. In the last step, multiplying a pressure
range times a slope representing the change in the number of fringes per unit
pressure results in the total number of fringes traversed m. Thus, the error
is inversely proportional to the number of fringes! For helium, a maximum of
5.5 fringes can be acquired over a safe pressure range, so the uncertainty in
the index of refraction is around 12%, an unacceptably high value. However,
for air, a maximum of 45 fringes can be acquired, so the uncertainty is only
0.6%, a much more acceptable value.

Fortunately, the Fourier transform’s weakness is the sinusoidal fit’s strength:
when there are only a few fringes, a sinusoidal fit can accurately calculate
the frequency; however, when there are many fringes, the fit is unable to
adapt to minuscule changes in frequency and amplitude, and these can com-
pound until the fit no longer agrees with the data. In summary, for gases
with refractive indices less than or close to that of helium, sinusoidal fitting
should be used. For gases with indices of refraction greater than or near air’s
index of refraction, Fourier transforms are more effective. For the region of
gases between helium and air, either method will work.

4.2 Coding the Resampler

The algorithm for resampling the data linearly in pressure is relatively
straightforward, and the code is attached in the back on Page 59. As be-
fore, presses are bunched and the clicks where reliable data starts and ends
are noted. Two functions are defined: P [x], which takes a data point index
and turns it into a pressure, and X[p], which does the inverse. P is used
to determine the pressures where good data starts and ends. The intensity
data, which starts linearly in time, is interpolated linearly. A linear space
of pressure points is created from the start of the accurate pressure data to
its end, and each pressure is applied to X, which returns its corresponding
point. All of these points sample the interpolating function, creating a new
function of fringe intensities that is sampled linearly in pressure.

4.3 Helium Results

Table 2 shows the results from fitting fringe amplitude data that’s equally
spaced in pressure to a sinusoid. The graphs are shown in Figures 27, 28, 29,
30, 31, and 32. The calculated index of refraction is 35.98± 0.05, calculated
with the mean and standard error of the six trials. The mean very similar to
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Table 2: The index of refraction of helium, 35.98 ± 0.05, is nearly identical
to the previously attained value of 36.01± 0.06 once the outlier is excluded.
The uncertainty is slightly smaller, however. The sinusoidal fitting process
was not carried out for the data taken on the first day.

He Refractive Index - Sinusoidal Fit

Day Time Len (s) (n-1)×10−6

2

14:11 324 35.95
14:19 314 35.78
14:28 352 36.02
14:42 157 35.01
14:55 641 36.06
15:06 506 36.07

Average - Day 2 35.82 ± 0.17

Average - No Outlier 35.98 ± 0.05

the mean calculated with the original methodology, and an uncertainty 20%
less. The fitting models agree well with the data, but once again, with no
uncertainties in the data, the χ2 values are meaningless. The data seemed
to fit the worst near the peaks, where small fluctuations in the data were
apparent. The residuals appear mostly random, but there appears to be a
small oscillatory component. This new method lowers the propagated un-
certainty on each individual run’s implied index of refraction by 20%, but
the propagated uncertainty is still half of the uncertainty calculated by the
standard error of the five included data runs.

While it could be argued that a 20% reduction in uncertainty wasn’t worth
the trouble, using a second method to obtain similar results is useful. It vali-
dates both routines, which is no small accomplishment. For the curve fitting
technique, it confirms that fitting intensity over pressure is a valid method
of finding the index of refraction. For the original technique, it suggests
that the determined algorithm of locating a point’s fraction within a fringe
is very effective. In order to calculate a more precise result, temperature,
which varied by as much a few tenths of a degree Celsius, might have to be
controlled.

4.4 Air Results

4.4.1 Sinusoidal Fitting for Air

The sinusoidal data fitting technique was tested against previous data gath-
ered during Experiment 2 with air as the gas. This data has several problems;
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Table 3: The index of refraction of air is fairly different from the value of
tabulated value, 2.77.

Air Refractive Index - Sinusoidal Fit

Time Len (s) (n-1)×10−4

11:49 844 2.86

12:13 431 2.80

12:52 550 2.81

13:31 616 2.80

13:39 251 2.75

Average 2.80 ± 0.02

firstly, there were only a dozen or so pressure data points taken, so the pres-
sure over time curve is not as reliable; secondly, with so many fringes, it’s
difficult to fit them all. The graphs are shown in Figures 33, 34, 35, 36, and
37. As expected, the fits are abysmal. Only Figure 37 had a good fit; every
other graph has a changing fringe frequency, which causes the sinusoidal fit
to fail. Figure 37 was the shortest data run - over longer periods, small heat
changes can change the frequency enough to ruin the fit. One of the advan-
tages of the Fourier transform method is that this problem is avoided. Table
3 shows the data. The index of refraction of air, 2.80 ± 0.02, is different
from the tabulated value, 2.77, but not by a huge margin.

4.4.2 Fourier Transform Code

The Fourier transform Python code is attached on Page 61. The code loads
the resampled pressure-domain data from the file. The signal is centered
around zero to avoid generating any DC offset. An optional Blackman-Harris
window is applied to the data; this reduces spectral leakage and makes the
existing frequencies stand out. Unfortunately, these two functions change
the fringes’ amplitude, so it becomes impossible to recover the intensity’s
minimum and maximum, but they make it easier to find C, the variable we
care about most. The Fourier transform of the data is taken, a spectrum is
output to a file, and the index of the maximum element nmax is found. Then
Equations 11, 12, and 13 are implemented and the result is returned.

There are two ways to recover the index with the highest Fourier ampli-
tude. The first is by simply taking the maximum, which is discussed above:

nmax = maxIndex[f ]

if f is the Fourier transform of the intensity. However, the uncertainty of
this method is given by Equation 14, since the maximum index has to be
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Table 4: The index of refraction of air computed using the Fourier transform
method, as (n−1)×10−4. Using the weighted average method greatly lowers
the deviation between runs. Both values are significantly different from the
tabulated value at 15 ◦C, 2.766.

Air Refractive Index - Fourier Transform

Time Len (s) Max Index Weighted Avg

11:49 844 2.87 ± 0.04 2.785

12:13 431 2.82 ± 0.04 2.819

12:52 550 2.85 ± 0.04 2.788

13:31 616 2.78 ± 0.04 2.786

13:39 251 2.73 ± 0.04 2.802

Average 2.81 ± 0.03 2.796 ± 0.006

an integer. A more effective algorithm is to find the weighted average of the
maximum point and the points left and right of it:

nmax =
(nmax − 1)× |fnmax−1|+ (nmax)× |fnmax |+ (nmax + 1)× |fnmax+1|

|fnmax−1|+ |fnmax |+ |fnmax+1|

where fa is the a’th element of the Fourier transform. Test code is also
included to generate a sample wave and test the calculated C.

4.4.3 Fourier Transform Results for Air

The spectra graphs for air are shown in Figures 38, 39, 40, 41, and 42. Vi-
sually, it is clear that the index of refraction is close to literature values, and
the 3-point average method appears to be more centered in the peak than
the maximum index method. The results are shown in Table 4. Using the
weighted average method greatly lowers the deviation between runs because
it accounts for nearby points that may be almost as high as the maximum
(see Figure 40). Both values are significantly different from the tabulated
value at 15 ◦C, 2.766. This is interesting because a subset of this data in
Experiment 2 yielded an answer very close to the actual value. Interestingly,
these indices of refraction are close to the those seen using the sinusoidal
fitting method, which makes sense because they’re both calculating the fre-
quency of the same resampled intensity data. Given that both of these
methods are giving similar and incorrect answers, the problem is likely that
the resampled data has an error. The pressure-over-time data for air had
only a dozen data points, so the resulting fit might not have been accurate.
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Table 5: The index of refraction of helium is computed using the Fourier
transform method on Day 2 data, as (n − 1) × 10−6. Using the weighted
average method greatly lowers the deviation between runs; as expected, the
max index uncertainty, which is calculated not as the standard error but
propagated error stemming from the discrete Fourier transform resolution,
is too great for results of any significance. However, the weighted average
method has a lower uncertainty but gives a different index of refraction from
the value of 35.98± 0.05 calculated earlier.

Air Refractive Index - Fourier Transform

Time Len (s) Max Index Weighted Avg

14:11 324 33.9 ± 3.4 35.4

14:19 314 34.0 ± 3.4 35.1

14:28 352 34.1 ± 3.4 35.5

14:42 157 33.5 ± 3.4 34.9

14:55 641 33.8 ± 3.4 35.1

15:06 506 34.2 ± 3.4 35.5

Average 34 ± 3 35.24 ± 0.10

4.5 Fourier Transform Results for Helium

Even though it has already been argued that Fourier analysis is probably
not great for helium, it was trivial to do it after the code had been written
for air. The graphs are shown in Figures 43, 44, 45, 46, 47, and 48. The data
is shown in Table 5. As expected, the max index uncertainty is too great for
results of any significance. Unlike the weighted average uncertainty, which
is the standard error of the results from individual experiments, the max
index uncertainty is propagated error stemming from the discrete Fourier
transform resolution (see Equation 14). This is because the uncertainty
from the theoretical resolution was greater than the standard error. Since
both this Fourier method and the sinusoidal fitting method use the same
resampled pressure data, the resulting values for the index of refraction
should have been closer; however, this can probably be attributed to what
had already been hypothesized: Fourier transform analysis should not be
used for gases with indices of refraction as low as that of helium.

5 Conclusion

The LabView modifications and the Python fringe estimator developed in
Experiment 2 turned out to be very effective in measuring the index of re-
fraction of helium. It also yielded additional pressure and timing data that
opened multiple doors for new methods of data analysis. The pressuriza-
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tion of the cell over time matched closely to theory, but using that data to
determine the indices of refraction had mixed results, with moderate suc-
cess with helium and the sinusoidal fitting, and less success with the Fourier
transform.
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6 Graphics

6.1 Helium Fringes vs. Pressure

Figure 8: Day 1 1:30 PM - A linear fit is great for this data. Data run
consisted of 5 evacuations and fillings to remove any air from the system,
followed by one slow pressurization of the cell while fringe and pressure data
were recorded. The data run was a single measurement without uncertainty,
so the error bars shown have no statistical meaning; therefore, the uncer-
tainties and the χ2 values are also meaningless.
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Figure 9: Day 1 4:36 PM - This was the longest data run, and its residuals
show that other effects such as temperature drifts are affecting the data.

Figure 10: Day 2 2:11 PM - A linear fit is great for this data.
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Figure 11: Day 2 2:19 PM - The first dozen data points do not fit the curve
well, so the data was masked.

Figure 12: Day 2 2:28 PM - A linear fit is good for this data.
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Figure 13: Day 2 2:42 PM - This data was taken in half the time that the
others took. The slope is significantly different than the others’ as well. It’s
likely that letting the gas in too fast introduced too much noise. This data
was excluded in from the calculation of the index of refraction of helium.

Figure 14: Day 2 2:55 PM - A linear fit is alright for this data. This data
run was twice as long as the others, so there many be some long-term effects
(like thermal fluctuations) in the data.
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Figure 15: Day 2 3:06 PM - A linear fit is alright for this data, but the error
bars were noticeably smaller for this data set. The error estimator in the
Python script isn’t terribly accurate, which is alright since the uncertainty
propagation is not critical here.
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6.2 Air Pressure vs. Time

Figure 16: Air Pressure over Time (from Lab Report 2) - This fit isn’t as good
particularly with its patterned residuals. The value for the air pressure is
not close to the true value. These graphs also represent single measurements
without uncertainty, so the χ2 value is meaningless.
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Figure 17: Air Pressure over Time (from Lab Report 2) - This data fits the
theoretical model very well, and gives a reasonable value for atmospheric air
pressure.

Figure 18: Air Pressure over Time (from Lab Report 2) - This fit isn’t as
good particularly with its patterned residuals, but the atmospheric pressure
value is reasonable.

30



Figure 19: Air Pressure over Time (from Lab Report 2) - This fit isn’t as
good particularly with its patterned residuals, and the atmospheric pressure
value is a little low.

Figure 20: Air Pressure over Time (from Lab Report 2) - This fit is great,
as is the atmospheric pressure value.
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6.3 Helium Pressure vs. Time

Figure 21: Helium Pressure over Time - The data fits the model very well.
As before, each data point is a single measurement without uncertainty, so
the propagated uncertainty and χ2 values are meaningless.
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Figure 22: Helium Pressure over Time - The patterned residuals are very
obvious here, but the fit is still good.

Figure 23: Helium Pressure over Time - The patterned residuals are very
obvious here, but the fit is still good.
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Figure 24: Helium Pressure over Time - This fit is nearly perfect. It is the
only graph that doesn’t have the patterned residual. This may be because
it was the shortest data run by a factor of two.

Figure 25: Helium Pressure over Time - The patterned residuals are very
obvious here, but the fit is still alright.
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Figure 26: Helium Pressure over Time 3:10 pm - The patterned residuals
are very obvious here, but the fit is still alright.
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6.4 Helium Fringes vs. Pressure

Figure 27: Day 2 2:11 PM. Each data point is a single measurement without
uncertainty, so the propagated error for the fitting parameters and χ2 values
are meaningless.

Figure 28: Day 2 2:19 PM
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Figure 29: Day 2 2:28 PM

Figure 30: Day 2 2:42 PM
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Figure 31: Day 2 2:55 PM

Figure 32: Day 2 3:06 PM
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6.5 Air Fringes vs. Pressure

Figure 33: Experiment 2 Air Data - 11:49 AM. The data for these plots
starts out fitting the curve, but small changes in temperature cause the
fringe period to drift and the fit to fail. Over the last 200 mmHg, the fringe
period increases substantially. Since each data point is a single measurement
without uncertainty, so the uncertainty in the fitting parameters and the χ2

values are meaningless.

Figure 34: Experiment 2 Air Data - 12:13 PM. This fit starts out well, but
the fringe period changes at around 600 mmHg. It appears to match the fit
again by 700 mmHg.
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Figure 35: Experiment 2 Air Data - 12:52 PM

Figure 36: Experiment 2 Air Data - 1:31 PM

Figure 37: Experiment 2 Air Data - 1:39 PM
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6.6 Fourier Transform of Air

Figure 38: Experiment 2 Air Data - 11:49 AM - Spectrum around the peak
frequency. The green vertical line is the n-1 calculated by the maximum
index method; the red vertical line, if it’s not behind the green line, is the
index of refraction calculated by the 3-point average method. Here, the peak
is symmetric, so the two methods are nearly equivalent.
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Figure 39: Experiment 2 Air Data - 12:13 PM - The red line is closer to the
center of the spectra than is the green line.

42



Figure 40: Experiment 2 Air Data - 12:52 PM - When the peaks are of
nearly equal value, the maximum index method (green) is very inaccurate;
the average method (red) is closer to the center.
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Figure 41: Experiment 2 Air Data - 1:31 PM - The average method (red)
looks like a better estimation of the data’s central frequency than the max-
imum index method (green).
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Figure 42: Experiment 2 Air Data - 1:39 PM - Here, the peak is symmetric,
so the two methods are nearly equivalent.

45



6.7 Fourier Transform of Helium

Figure 43: Day 2 Helium Data - 2:11 PM
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Figure 44: Day 2 Helium Data - 2:19 PM

Figure 45: Day 2 Helium Data - 2:28 PM
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Figure 46: Day 2 Helium Data - 2:42 PM

Figure 47: Day 2 Helium Data - 2:55 PM
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Figure 48: Day 2 Helium Data - 3:06 PM
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7 Code Appendix

7.1 process.py

1 import os

2 import sys

3 import numpy as np

4 import pylab

5 import math

6

7 import smooth

8

9 crop=2

10

11 def process(data_fstr, press_fstr, debug_dstr,

12 fix_press_errors=True, smooth_presses=True):

13

14 print "Processing %s" % os.path.split(data_fstr)[1].split(’.’)[0]

15 if not os.path.exists(debug_dstr):

16 os.mkdir(debug_dstr)

17

18 # use Numpy to load the data from the text file

19 data, presses = map(np.genfromtxt, [data_fstr, press_fstr])

20

21 # group the key press locations

22 presses = average(group(presses))

23

24 # see if any key presses are missing

25 if fix_press_errors:

26 presses = fix_presses(presses)

27

28 for p in presses:

29 print p

30 print

31 return

32

33 print len(presses)

34 # optionally smooth key press data- USE WITH CAUTION

35 if smooth_presses:

36 presses = buff(presses, crop)

37 print len(presses)

38 savePresses(presses[crop:-crop], os.path.join(debug_dstr, ’presses_raw’), ’Before Smoothing Presses’)

39 spresses = smooth.smooth(np.array(presses), window_len=4)

40 savePresses(spresses[crop:-crop], os.path.join(debug_dstr, ’presses_smooth’), ’After Smoothing Presses’)

41 savePresses((spresses - np.array(presses))[crop:-crop], os.path.join(debug_dstr, ’presses_dif’), ’After Smoothing Presses’)

42 presses = presses[crop:-crop]

43 print len(presses)

44

45 saveArray(data, os.path.join(debug_dstr, ’raw’), ’Before Smoothing’)

46

47 # Calculate the window length with this estimation. Longer data typically has to be

48 # smoothed more! Supersmoothing is used to determine the extrema location. Less

49 # smoothing is necessary for the rest.

50 windowLen = min(800, len(data) / 80)

51 supersmoothdata = list(smooth.smooth(data, window_len=windowLen))

52 saveArray(supersmoothdata, os.path.join(debug_dstr, ’supersmooth’), ’After Super Smoothing’)

53

54 # Normal smooth the data

55 data = list(smooth.smooth(data, window_len=35))

56 saveArray(data, os.path.join(debug_dstr, ’smooth’), ’After Smoothing’)
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57

58 # Access the voltage where every key was pressed

59 pressHeights = lookup_vals(data, presses)

60

61 # Calculate where the extrema are

62 minmax, firstIsMax = find_extrema(supersmoothdata, int(presses[0]), int(presses[-1]))

63 extremaHeights = lookup_vals(data, minmax)

64 extremas = extrema(minmax, extremaHeights, firstIsMax)

65 plot_extrema_presses(data, minmax, presses, pressHeights,

66 os.path.join(debug_dstr, ’extrema’))

67

68 # Lookup the fractional position of each press between 2 extrema.

69 # f1 does this in X, and f2 does this in Y.

70 f1 = crude_fraction(presses, extremas)

71 f2 = fraction_between_extrema(presses, pressHeights, extremas)

72

73 diff = sum(abs(np.array(f1) - np.array(f2))) / len(f2)

74 print "Average diff between crude & accurate fractions: %.4f wavelengths" % diff

75

76 delta2 = find_deltas(presses, f2, extremas)

77 delta1 = find_deltas(presses, f1, extremas)

78

79 mean2, stdev2 = meanstdev(delta2)

80 mean1, stdev1 = meanstdev(delta1)

81

82 delta2 = [0] + list(np.cumsum(np.array(delta2)))

83 delta1 = [0] + list(np.cumsum(np.array(delta1)))

84

85 for i, x in enumerate(delta2):

86 print i, x, stdev2, delta1[i], stdev1

87

88

89 """ Calculate mean and standard deviation of data x[]:

90 mean = {\sum_i x_i \over n}

91 std = sqrt(\sum_i (x_i - mean)^2 \over n-1)

92 """

93 def meanstdev(x):

94 from math import sqrt

95 n, mean, std = len(x), 0, 0

96 for a in x:

97 mean = mean + a

98 mean = mean / float(n)

99 for a in x:

100 std = std + (a - mean)**2

101 std = sqrt(std / float(n-1))

102 return mean, std

103

104

105 def find_deltas(presses, frac_extremas, extremas):

106 ret = []

107 for i in xrange(len(presses) - 1):

108

109 initial = 0.5 - frac_extremas[i]

110 final = frac_extremas[i+1]

111 extremasIndexAfterInitial = extremas.indexBelowAbove(presses[i])[1]

112 extremasIndexBeforeFinal = extremas.indexBelowAbove(presses[i+1])[0]

113 d = initial + final + (-extremasIndexAfterInitial + extremasIndexBeforeFinal) / 2.0

114 ret.append(d)

115

116 return ret
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117

118 def crude_fraction(presses, extrema):

119

120 ret = []

121 for X in presses:

122 #print "Press Position: %s" % X

123 lowerExtremaIndex, upperExtremaIndex = extrema.indexBelowAbove(X)

124 Nbefore = extrema.x[lowerExtremaIndex]

125 Nafter = extrema.x[upperExtremaIndex]

126 #print " Extrema Below: #%s @ %s" % (lowerExtremaIndex, Nbefore)

127 #print " Extrema Above: #%s @ %s" % (upperExtremaIndex, Nafter)

128 fraction = (X - Nbefore) / (2.0 * (Nafter - Nbefore))

129 #print " Crude Fraction: %s" % fraction

130 ret.append(fraction)

131

132 return ret

133

134 def fraction_between_extrema(presses, pressHeights, extrema):

135

136 ret = []

137 for X, Y in zip(presses, pressHeights):

138 beforeExtremaIndex, afterExtremaIndex = extrema.indexBelowAbove(X)

139 beforeExtremaYValue = extrema.y[beforeExtremaIndex]

140 beforeExtremaMax = extrema.isMax(beforeExtremaIndex)

141 afterExtremaYValue = extrema.y[afterExtremaIndex]

142

143 if beforeExtremaMax:

144 MIN = beforeExtremaYValue

145 MAX = afterExtremaYValue

146 else:

147 MIN = afterExtremaYValue

148 MAX = beforeExtremaYValue

149

150 X = 0.25 + (3 / (2 * math.pi)) * \

151 math.asin( (2*Y - MIN - MAX) / (2 * (MAX - MIN)))

152

153 if beforeExtremaMax:

154 ret.append(X)

155 else:

156 ret.append(0.5 - X)

157 return ret

158

159

160 def find_extrema(data, start, end):

161 first, firstIsMax = find_extrema_left(data, start)

162 ret = [first]

163 nextIsMin = firstIsMax

164

165 while first < end:

166 first = find_next_extrema(data, first, nextIsMin)

167 ret.append(first)

168 nextIsMin = not nextIsMin

169

170 return ret, firstIsMax

171

172 def find_next_extrema(data, start, isMin, incr = 65):

173 s_0 = start + 2 * incr

174

175 if s_0 > len(data):

176 print "find_next_extrema error: position %i" % start
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177 s_0 = len(data) - 1

178 raw_input()

179

180 point = data[start]

181 right = data[start + incr]

182 right2= data[s_0]

183

184 if not isMin and point < right and right > right2:

185 return start + index(max, data[start : s_0])

186 if isMin and point > right and right < right2:

187 return start + index(min, data[start : s_0])

188 return find_next_extrema(data, start+incr, isMin, incr)

189

190

191 def find_extrema_left(data, start, incr = 40):

192 s_0 = start - 2 * incr

193 point = data[start]

194 left = data[start - incr]

195 left2= data[s_0]

196

197 if point > left and left < left2:

198 return s_0 + index(min, data[s_0 : start]), False

199 if point < left and left > left2:

200 return s_0 + index(max, data[s_0 : start]), True

201 else:

202 return find_extrema_left(data, start-incr, incr)

203

204

205 def index(function, L):

206 m = function(L)

207 for i, val in enumerate(L):

208 if m == val: return i

209

210

211 def lookup_vals(data, points):

212 return [(1 - p + math.floor(p)) * data[int(math.floor(p))] +

213 ( p - math.floor(p)) * data[int(math.ceil(p))] for p in points]

214

215

216 def average(x):

217 ret = np.empty(len(x))

218 for i in xrange(len(x)):

219 ret[i] = sum(x[i]) / 2.0

220 return ret

221

222 def group(x):

223 ret = []

224 L = len(x)

225 start = None

226 for i in xrange(L):

227 thisEl = x[i]

228 nextEl = x[i + 1] if i+1 < L else None

229 if start is None:

230 start = thisEl

231 if thisEl + 1 != nextEl:

232 end = thisEl

233 ret.append((start, end))

234 start = None

235 return ret

236
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237 def rename(d, n):

238 return os.path.join(d, n.replace(’.data.txt’, ’.press.txt’))

239

240

241 def savePresses(n, fname, title=’’):

242 xdim = max(len(n) / 600, 8)

243 pylab.figure(figsize = (xdim,6), frameon=False)

244 pylab.plot(n, ’.’)

245 pylab.ylabel(’Press Position’)

246 pylab.xlabel(’Press Number’)

247 pylab.title(title)

248 pylab.savefig(fname + ".png")

249 pylab.close()

250

251

252 def saveArray(n, fname, title=’’):

253 raw_plot(n)

254 pylab.title(title)

255 pylab.savefig(fname + ".png")

256 pylab.close()

257

258 def plot_extrema_presses(data, minmax, presses, pheights, fname):

259 raw_plot(data)

260 for m in minmax:

261 pylab.axvline(x=m, color=’r’)

262

263 pylab.plot(presses, pheights, ’go’)

264

265 pylab.title("Extrema Locations")

266 pylab.savefig(fname + ".png")

267 pylab.close()

268

269 def raw_plot(n):

270 xdim = max(len(n) / 600, 8)

271 pylab.figure(figsize = (xdim,6), frameon=False)

272 pylab.plot(n)

273 pylab.ylabel(’Voltage (V)’)

274 #pylab.ylim([0, 1])

275

276

277 def fix_presses(presses, margin=1.7):

278 """

279 >>> fix_presses([1,2,3,4,5,6,7])

280 [1, 2, 3, 4, 5, 6, 7]

281 >>> fix_presses([1,2,3,5,6,7])

282 Skipped press detected at Point 3

283 Presses are:

284 1 2

285 2 3

286 INSERTING 4.000000

287 3 5

288 [1, 2, 3, 4, 5, 6, 7]

289 >>> fix_presses([1,2,3,5,6,7, 9])

290 Skipped press detected at Point 3

291 Presses are:

292 1 2

293 2 3

294 INSERTING 4.000000

295 3 5

296 Skipped press detected at Point 6
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297 Presses are:

298 4 6

299 5 7

300 INSERTING 8.000000

301 6 9

302 [1, 2, 3, 4, 5, 6, 7, 8, 9]

303 """

304 new_presses = [presses[0]]

305 lastgap = presses[1] - presses[0]

306

307 for i in xrange(1, len(presses)):

308 newgap = presses[i] - presses[i-1]

309 if newgap > lastgap * margin:

310 newval = (presses[i] + presses[i-1])/2

311 print "Skipped press detected at Point %i" % i

312 print "Presses are:"

313 print i-2, presses[i-2]

314 print i-1, presses[i-1]

315 print "INSERTING %f" % newval

316 print i, presses[i]

317 new_presses.append(newval)

318 newgap /= 2

319 new_presses.append(presses[i])

320 lastgap = newgap

321

322 return new_presses

323

324

325 def buff(L, n=5):

326 """

327 >>> buff([5,6], 1)

328 [4, 5, 6, 7]

329 >>> buff([5,6], 2)

330 [3, 4, 5, 6, 7, 8]

331 >>> buff([5,6, 8], 2)

332 [3, 4, 5, 6, 8, 10, 12]

333 """

334 prv = L[1] - L[0]

335 nxt = L[-1] - L[-2]

336 prv = [L[0] - a * prv for a in reversed(xrange(1, n+1))]

337 nxt = [L[-1] + a * nxt for a in xrange(1, n+1)]

338 return prv + L + nxt

339

340

341 class extrema(object):

342

343 def __init__(self, x_points, y_points, firstIsMax):

344 self.x = x_points

345 self.y = y_points

346 self.firstIsMax = firstIsMax

347

348 def __len__(self):

349 return len(self.x)

350

351 def isMax(self, key):

352 return key % 2 != self.firstIsMax

353

354 def indexBelowAbove(self, x):

355 prevvalue = self.x[0]

356 for index, value in enumerate(self.x[1:]):
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357 if prevvalue <= x <= value:

358 return index, index+1

359 prevvalue = value

360

361

362 def main(args):

363 join = os.path.join; split = os.path.split

364 this_file = args[0]

365 parent_dir = split(this_file)[0]

366 debug_dir = join(parent_dir, ’debug’)

367 to_process = [x for x in args[1:] if ’.data.txt’ in x]

368

369 if to_process == []:

370 data = join(parent_dir, ’data’)

371 files = [join(data, fn) for fn in os.listdir(data)]

372 main([this_file] + files)

373 else:

374 results = [process(f,

375 join(rename(*split(f))),

376 join(debug_dir, split(f)[1].split(’.’)[0])

377 ) for f in to_process]

378 print results

379

380 if __name__ == ’__main__’:

381 main(sys.argv)

382 raw_input()
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7.2 smooth.py

1 import numpy

2

3 def smooth(x,window_len=11,window=’hanning’):

4 """smooth the data using a window with requested size.

5

6 This method is based on the convolution of a scaled window with the signal.

7 The signal is prepared by introducing reflected copies of the signal

8 (with the window size) in both ends so that transient parts are minimized

9 in the begining and end part of the output signal.

10

11 input:

12 x: the input signal

13 window_len: the dimension of the smoothing window; should be an odd integer

14 window: the type of window from ’flat’, ’hanning’, ’hamming’, ’bartlett’, ’blackman’

15 flat window will produce a moving average smoothing.

16

17 output:

18 the smoothed signal

19

20 example:

21

22 t=linspace(-2,2,0.1)

23 x=sin(t)+randn(len(t))*0.1

24 y=smooth(x)

25

26 see also:

27

28 numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve

29 scipy.signal.lfilter

30

31 TODO: the window parameter could be the window itself if an array instead of a string

32 """

33

34 if x.ndim != 1:

35 raise ValueError, "smooth only accepts 1 dimension arrays."

36

37 if x.size < window_len:

38 raise ValueError, "Input vector needs to be bigger than window size."

39

40

41 if window_len<3:

42 return x

43

44

45 if not window in [’flat’, ’hanning’, ’hamming’, ’bartlett’, ’blackman’]:

46 raise ValueError, "Window is on of ’flat’, ’hanning’, ’hamming’, ’bartlett’, ’blackman’"

47

48

49 s=numpy.r_[2*x[0]-x[window_len-1::-1],x,2*x[-1]-x[-1:-window_len:-1]]

50 #print(len(s))

51 if window == ’flat’: #moving average

52 w=numpy.ones(window_len,’d’)

53 else:

54 w=eval(’numpy.’+window+’(window_len)’)

55

56 y=numpy.convolve(w/w.sum(),s,mode=’same’)

57 return y[window_len:-window_len+1]

58
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59

60

61

62 from numpy import *

63 from pylab import *

64

65 def smooth_demo():

66

67 t=linspace(-4,4,100)

68 x=sin(t)

69 xn=x+randn(len(t))*0.1

70 y=smooth(x)

71

72 ws=31

73

74 subplot(211)

75 plot(ones(ws))

76

77 windows=[’flat’, ’hanning’, ’hamming’, ’bartlett’, ’blackman’]

78

79 hold(True)

80 for w in windows[1:]:

81 eval(’plot(’+w+’(ws) )’)

82

83 axis([0,30,0,1.1])

84

85 legend(windows)

86 title("The smoothing windows")

87 subplot(212)

88 plot(x)

89 plot(xn)

90 for w in windows:

91 plot(smooth(xn,10,w))

92 l=[’original signal’, ’signal with noise’]

93 l.extend(windows)

94

95 legend(l)

96 title("Smoothing a noisy signal")

97 show()

98

99

100 if __name__==’__main__’:

101 smooth_demo()
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7.3 pressure resample.py

1 import os

2 import sys

3 import numpy as np

4 import process

5 import math

6 import process

7

8 from scipy.interpolate import interp1d

9

10 def resample(data_fstr, press_fstr, fit_fstr, dest_fstr, debug_dstr):

11

12 print "Resampling %s" % os.path.split(data_fstr)[1].split(’.’)[0]

13 if not os.path.exists(debug_dstr):

14 os.mkdir(debug_dstr)

15 if not os.path.exists(fit_fstr):

16 print "Save fit parameters for P0 * Sin((t * C1 + C2]) / Sqrt(P0))"

17 print "Save in %s, in same order as above, one per line" % fit_fstr

18

19 # use Numpy to load the data from the text file

20 data, fit, presses = map(np.genfromtxt, [data_fstr, fit_fstr, press_fstr])

21

22 presses = process.average(process.group(presses))

23 xstart = presses[0]

24 xend = presses[-1]

25

26 @np.vectorize

27 def P(x):

28 return fit[0] * math.sin((x * fit[1] + fit[2]) / math.sqrt(fit[0]))

29

30 @np.vectorize

31 def X(p):

32 return (math.sqrt(fit[0]) * math.asin(p / fit[0]) - fit[2]) / fit[1]

33

34 L = len(data)

35 interpdata = interp1d(range(L), data)

36 print ’.’,

37 pstart = P(xstart)

38 pend = P(xend)

39 pressurePoints = np.linspace(pstart, pend, L)

40 print ’.’,

41 resampled = interpdata(X(pressurePoints))

42 print ’.’,

43 np.savetxt(dest_fstr, np.column_stack((pressurePoints, resampled)))

44 print "Done"

45

46 def rename(f, new):

47 [d, n] = os.path.split(f)

48 return os.path.join(d, n.replace(’.data.txt’, ’.’ + new + ’.txt’))

49

50 def main(args):

51 join = os.path.join; split = os.path.split

52 this_file = args[0]

53 parent_dir = split(this_file)[0]

54 debug_dir = join(parent_dir, ’debug’)

55 to_process = [x for x in args[1:] if ’.data.txt’ in x]

56

57 if to_process == []:

58 data = join(parent_dir, ’data’)

59



59 files = [join(data, fn) for fn in os.listdir(data)]

60 main([this_file] + files)

61 else:

62 [resample(f,

63 rename(f, ’press’),

64 rename(f, ’fit’),

65 rename(f, ’resampled’),

66 join(debug_dir, split(f)[1].split(’.’)[0])

67 ) for f in to_process]

68

69 if __name__ == ’__main__’:

70 main(sys.argv)
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7.4 fourier transform.py

1 import os

2 import sys

3 import numpy as np

4 import process

5 import math

6 import process

7 import pylab

8 from scipy.interpolate import interp1d

9 from pressure_resample import rename

10 from scipy.signal import get_window

11

12 def fd(data_fstr, img_fstr, debug_fstr):

13 print "Fourier Transforming %s" % os.path.split(data_fstr)[1].split(’.’)[0]

14

15 print data_fstr

16 print img_fstr

17

18 [P, I] = np.loadtxt(data_fstr, unpack=True)[:10]

19 Cnmax, nmax, imax, imin, C, Cerr, C2 = fd_worker(P, I, img_fstr)

20

21 print "Cnmax", Cnmax

22 print "nmax", nmax

23 print "Imax", imax

24 print "Imin", imin

25 print "C %s +/- %s, %s" % (C, Cerr, C2)

26

27 CtoN = 1609.248193

28

29 def fd_worker(P, I, img_fstr):

30 N = len(P)

31 I -= np.mean(I)

32 I *= get_window("blackmanharris", N)

33 f = np.fft.fft(I)

34 nmax = abs(f[:N/2]).argmax(); Cnmax = abs(f[nmax])

35 C0 = abs(f[0])

36 imax = 4 * Cnmax / N

37 imin = (C0 - 2 * Cnmax)/ N

38 C = np.pi * nmax / (P[-1] - P[0])

39 Cerr = np.pi / (P[-1] - P[0])

40

41 Cnmaxm = abs(f[nmax-1])**2

42 Cnmaxp = abs(f[nmax+1])**2

43 Cnmaxs = Cnmax**2

44

45 C2 = ((nmax-1) * Cnmaxm + (nmax) * Cnmaxs + (nmax+1) * Cnmaxp)\

46 / (Cnmaxm + Cnmaxs + Cnmaxp) * np.pi / (P[-1] - P[0])

47

48 x = C / nmax * CtoN * np.arange(max(0, nmax-5), nmax+5)

49 y = abs(f[max(0, nmax-5):nmax+5])

50 pylab.figure(frameon=False)

51 pylab.plot(x, y)

52 pylab.plot([C * CtoN]*2, [0, max(y)*1.1])

53 pylab.plot([C2 * CtoN]*2, [0, max(y)*1.1])

54 pylab.ylabel(’Amplitude’)

55 pylab.xlabel(’Implied Index of Refraction (n-1)E-6 760mmHg 0C’)

56 pylab.title("Fourier Transform of Intensity")

57 pylab.savefig(img_fstr)

58 pylab.close()
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59

60 return Cnmax, nmax, imax, imin, C, Cerr, C2

61

62

63 def test_fd_worker():

64 C = 0.178

65 Phi = 2.038

66 Imin = 0.34

67 Imax = 1.19

68 DeltaP = .015

69 PStart =50

70 PEnd = 850;

71

72 P = np.arange(PStart, PEnd, DeltaP)

73 I = Imax * (np.cos(2*C*P + Phi) + 1) / 2 + Imin;

74

75 Cnmax, nmax, Imax, Imin, C, Cerr, C2 = fd_worker(P, I, "test.png")

76

77 print "Cnmax", Cnmax

78 print "nmax", nmax

79 print "Imax", Imax

80 print "Imin", Imin

81 print "C %s +/- %s, %s" % (C, Cerr, C2)

82

83

84 def main(args):

85 #if 1:

86 # test_fd_worker()

87 # return

88

89 join = os.path.join; split = os.path.split

90 this_file = args[0]

91 parent_dir = split(this_file)[0]

92 debug_dir = join(parent_dir, ’debug’)

93 img_dir = join(join(parent_dir, "img"), "fd")

94 to_process = [x for x in args[1:] if ’.data.txt’ in x]

95

96 if to_process == []:

97 data = join(parent_dir, ’data’)

98 files = [join(data, fn) for fn in os.listdir(data)]

99 main([this_file] + files)

100 else:

101 [fd(rename(f, ’resampled’),

102 join(img_dir, split(f)[1].split(’.’)[0] + ".png"),

103 join(debug_dir, split(f)[1].split(’.’)[0])

104 ) for f in to_process]

105

106 if __name__ == ’__main__’:

107 main(sys.argv)
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