CS 5 Not-Quite-Daily News

Cheating Penguin

Claremont (Antarctic News Service): A disgraced penguin left a local college after being caught violating the institution's honor code.
The bird had been working on a computer science game project when a fellow student discovered that the game's animated fish were in fact live animals trapped in
 his laptop.
"Apparently he couldn't get the animation to look right, so he thought he could take a shortcut and nobody would notice," said a professor. "But when water started leaking from his screen, it was pretty obvious that something was going on. By then the fish had died, and the smell was so bad we had to evacuate the lab."

The penguin will be punished with a one-year suspension and a ban on all future contact with marine life forms.

Homework 12

- Building finite-state machines
- Mathematical foundations of CS
- Project milestone ("progress report")

Labs in Weeks 12-13

- Tue and Wed, 2:45 PM and 6 PM
- Entirely optional
- Work on FSMs (HW 12)
- Work on final project milestone
- Note: you won't get quick feedback on milestone, so join us for lab!

State?

The state of a computation (or computer) is

all the internal information needed to take the next step

Picobot == State Machine

0 x*** $->\mathbf{N} 0$
0 N*** $->\mathrm{S} 1$
1 ***X $->$ S 1
$1 * * * \mathrm{~N} \rightarrow \mathrm{~N} 0$

N***

go S
each circle represents a different robot state

Computer == State Machine

"States"

Time

Our Model of Computation: FSMs

FSM or Finite State Machine (also called
a Deterministic Finite Automaton)
Example:

start state
"input funnel"

How it runs:
input sequence
100101
accepting states double circled

Our Model of Computation: FSMs

FSM or Finite State Machine (also called
a Deterministic Finite Automaton)
Example:

start state
"input funnel"

How it runs:
input sequence
100101
What does this FSM do overall?

Our Model of Computation: FSMs

FSM or Finite State Machine (also called
a Deterministic Finite Automaton)
Example:

start state
"input funnel"

How it runs:
input sequence
100101
accepting states double circled

Our Model of Computation: FSMs

FSM or Finite State Machine (also called
a Deterministic Finite Automaton)
Example:

start state
"input funnel"

How it runs:
input sequence
100101
accepting states double circled

Our Model of Computation: FSMs

FSM or Finite State Machine (also called
a Deterministic Finite Automaton)
Example:

start state
"input funnel"

How it runs:
input sequence
100101
accepting states double circled

Our Model of Computation: FSMs

FSM or Finite State Machine (also called
a Deterministic Finite Automaton)
Example:

start state
"input funnel"

How it runs: montegequene 100101
accepting states double circled

Our Model of Computation: FSMs

FSM or Finite State Machine (also called
a Deterministic Finite Automaton)
Example:

start state
"input funnel"

How it runs:
input sequence
100101
accepting states double circled

Our Model of Computation: FSMs

FSM or Finite State Machine (also called
a Deterministic Finite Automaton)
Example:

start state
"input funnel"

How it runs: now seauene 100101
accepting states double circled

JFLAP!

Graphical state-machine builder for HW12

Another Example

1. What are three inputs this machine accepts?
2. How about three it rejects?
3. In English, what inputs are accepted?
4. What does each state mean?

No Occurrences of 110

Draw an FSM to accept strings that don't contain the pattern 110 anywhere

No Occurrences of 110

Draw an FSM accepting strings that do NOT contain the pattern 110 anywhere

The minimum possible number of states?

A THEOREM:

LIST ALL MATH JOKES IN ORDER OF LENGTH. ASSUME THERE IS A LARGEST MATH JOKE, L. CREATE A NEW MATH JOKE J BY APPENDING TO \angle THAT JOKE ABOUT THE PIRATE WHO HAS A WHEEL ON HIS CROTCH THAT IS "DRIVIN' ME NUTS!" J IS NOW LARGER THAN C, WHICH IS A CONTRADICTION. THEREFORE THE SET OF MATH JOKES IS INFINITE.

NOW,

ASSUME A GOOD MATH JOKE, M.
IF M IS A GOOD JOKE, THEN IT IS FUNNY.
IF A JOKE IS FUNNY THEN EVERYONE WILL KNOW IT.
IF EVERYONE KNOWS A JOKE, THE JOKE WILL NOT BE FUNNY.

IF A JOKE IS NOT FUNNY, THEN IT IS NOT A GOOD JOKE. THEREFORE, IF M IS A GOOD JOKE, M IS NOT A GOOD JOKE. BY CONTRADICTION, THERE ARE NO GOOD MATH JOKES.

THEREFORE:

THERE ARE INFINITELY MANY MATH JOKES
AND NONE OF THEM ARE GOOD.

QED

Zeros Are a Multiple of 3

Draw an FSM to accept strings for which the number of zeros is a multiple of 3

Third From Left Is 1

Draw an FSM to accept strings for which the third digit from the left is a 1

Third-to-Last Character Is a 1

Draw an FSM to accept strings for which the third-from-last digit is a 1

Third-to-Last Character Is a 1

Draw an FSM accepting strings whose third-to-last digit (from the right) is a 1.

The minimum possible number of states?

Third-to-Last Character Is a 1

Draw an FSM accepting strings whose third-to-last digit (from the right) is a 1.

8 states suffice!

FSM Computability

Are there limits to an FSM's capabilities?

only 1s and 0s?

Two More FSMs

What FSM accepts inputs whose first character is the same as the last character?

Two More FSMs

What FSM accepts inputs that are palindromes?

Are computers more powerful than FSMs?

FSMs are Everywhere!

FSMs are Everywhere!

Open Door

CS5 Black Worksheet

Name:
Date:

