
1. Introduction

This book is intended for a broad second course in computer science, one emphasizing
principles wherever it seems possible at this level. While this course builds and amplifies
what the student already knows about programming, it is not limited to programming.
Instead, it attempts to use various programming models to explicate principles of
computational systems. Before taking this course, the student should have had a solid
one-semester course in computer programming and problem-solving, ideally using the
Java language, since some of the presentation here uses Java. The philosophy taken in
this course is that computer science topics, at an introductory level, are best approached
in an integrated fashion (software, theory, and hardware) rather than as a series of
individual isolated topics. Thus several threads are intertwined in this text.

1.1 The Purpose of Abstraction

This text touches, at least loosely, upon many of the most important levels of abstraction
in computer systems. The term abstract may be most familiar to the student in the form
of an adjective, as in abstract art. That association may, unfortunately, conjure a picture
of being difficult to understand. In fact, the use we make of the term of abstract is to
simplify, or eliminate irrelevant detail, as in the abstract of a published paper, which
states the key ideas without details. In computer science, an abstraction is an intellectual
device to simplify by eliminating factors that are irrelevant to the key idea. Much of the
activity of computer science is concerned with inventing abstractions that simplify
thought processes and system development.

The idea of levels of abstraction is central to managing complexity of computer systems,
both software and hardware. Such systems typically consist of thousands to millions of
very small components (words of memory, program statements, logic gates, etc.). To
design all components as a single monolith is virtually impossible intellectually.
Therefore, it is common instead to view a system as being comprised of a few interacting
components, each of which can be understood in terms of its components, and so forth,
until the most basic level is reached.

Thus we have the idea of implementing components on one level using components on
the level below. The level below forms a set of abstractions used by the level being
implemented. In turn, the components at this level may form a set of abstractions for the
next level. For example, proposition logic (also called switching logic, or sometimes
Boolean algebra) is an abstraction of what goes on at the gate-level of a computer. This
logic is typically implemented using electronics, although other media are possible, for
example mechanical logic or fluid logic. Switching logic, with the addition of memory
components such as flip-flops, is the basis for implementing finite-state machines.
Components such as registers and adders are built upon both logic and finite-state
machines. These components implement the instruction set of the computer, another
abstraction. The instruction set of the computer implements the programs that run on the

 Introduction2

computer. A compiler or assembler is a program that translates a program written in a
more user-friendly language into commands in the instruction set. The program might
actually be an interpreter or "virtual machine" for a still higher level language, such as
Java.

We never can be sure how far these levels may go; what were once complete systems are
now being fashioned into networks of computers, and those networks into networks,
which themselves are replete with layers of abstractions (called "protocol stacks"). The
same phenomenon occurs for software: compilers and interpreters for new languages may
be built atop existing languages. Figure 1 is meant to summarize some of these important
levels of abstraction.

The benefits of using abstraction are not unique to computer science; they occur in many
disciplines and across disciplines. For example:

Chemistry is an abstraction of physics: The purpose of chemistry is to
understand molecular interactions without resorting to particle physics to
explain every phenomenon.

Biology is an abstraction of chemistry: The purpose of biology is to
understand the growth and behavior of living things without resorting to
molecular explanations for every aspect.

Genetics is an abstraction of biology: The purpose of genetics is to
understand the evolution of traits of living organisms. Genetics develops
its own abstractions based on genes which don't require appealing to cells
in every instance.

We could go on with this list. Note that we are saying an abstraction rather than the
abstraction. It is not implied that the abstraction in question covers all aspects of the field
being abstracted, nor that it is the only possible abstraction of that field.

Some of the specific advantages in treating systems by levels of abstraction are:

• Each level has its own definition and specification. This means that
development using this level can proceed concurrently with
development at the next level.

• A system can be developed by more than one individual, each a
specialist in a particular aspect of construction. This is important since
some systems are sufficiently ambitious that they would be impossible
to develop by a single person in his or her lifetime.

• A system can evolve by evolving components separately; it is not
necessary to re-implement the entire system when one component
changes.

Introduction 3

• A non-working system can be diagnosed by diagnosing components at
their interfaces, rather than by exhaustively tracing the functions of all
components.

Historically, implementations tended to come before abstractions. That is, a system got
built, then abstractions were used to simplify its description. However, increasingly, we
need to think of the abstractions first then go about implementing them. The abstractions
provide a kind of specification of what is to be implemented.

electronics

logic

register-transfer
(finite-state machines)

instruction-set interpreter
(machine language)

assembly
language

compiled language

application program

window system

operating system

multiple
computer
processors ,
e.g. a network

algorithms

interpreter or virtual
machine

interpreted
language

Figure 1: Typical levels of abstraction in computer science.
The bolder items are ones given emphasis in this book.

 Introduction4

Constructing abstractions is somewhat of an art, with or without a prior implementation.
But understanding abstractions is rapidly becoming a way of life for those with any more
than a casual relationship to computers. As new languages emerge, they are increasingly
expressed using abstractions. A prime example is the object-oriented language Java ,
which we use in part of this text to exemplify object-oriented concepts. The idea of
inheritance is used heavily in the description of Java libraries. Inheritance hierarchies are
miniature abstraction hierarchies in their own right.

At the same time, we are interested in how certain key abstractions are actually realized
in hardware or in code, hence the word implementation in the title of the text. Having an
understanding of implementation issues is important, to avoid making unreasonable
assumptions or demands upon the implementor.

1.2 Principles

One might say that a science can be identified with its set of principles. Computer
Science is relatively young as a discipline, and many of its principles are concerned with
concepts lying at a depth which is beyond an introductory course such as this.
Nevertheless, a conscious attempt is made to identify ideas as named principles wherever
possible. Many of these principles are used routinely by computer scientists,
programmers, and designers, but do not necessarily have standard names. By giving them
names, we highlight the techniques and also provide more common threads for
connecting the ideas. Although a modicum of theory is presented throughout the text, we
are interested in imparting the ideas, rather than devoting attention to rigorous proofs.

While many of the points emphasized are most easily driven home by programming
exercises, it is important to understand that the course is not just about programming, but
rather about underlying conceptual continua that programming can best help illustrate.

1.3 Languages

The text is not oriented to a particular language, although a fair amount of time is spent
on some language specifics. The educational "industry" has emerged from a point where
Pascal was the most widely-taught introductory language. It was about ready to move on
to C++ when Java appeared on the horizon. Java is a derivative of C++, which offers
most of the object-oriented features of the latter, but omits some of the more confusing
features. (As is usually the case, it introduces some new confusing features of its own.)
For that reason, we start our discussion of object-orientation with Java. Another strong
feature of Java, not heavily exploited in this text, is that working application programs, or
“applets” as they are called, can be made available readily on the Internet. This text is
not, in any way, to be regarded as a replacement for a handbook on any particular
language, especially Java or C++. It is strongly advised that language handbooks be
available for reference to specific language details that this text does not cover.

Introduction 5

One purpose of a language is to give easy expression to a set of concepts. Thus, this book
starts not with Java but rather a functional language rex of our own design. An interpreter
for rex (implemented in C++) is provided. The rationale here is that there are many
important concepts that, while they can be applied in many languages, are most cleanly
illustrated using a functional language. To attempt to introduce them in Java would be to
obscure the concepts with syntactic rubric. We later show how to transcribe the thinking
and ideas into other languages. The current object-oriented bandwagon has much to
recommend it, but it tends to overlook some of the important ideas in functional
programming. In particular, functional programs are generally much easier to show
correct than are object-oriented programs; there is no widely-accepted mathematical
theory for the latter.

1.4 Learning Goals

The expected level of entry to this course is that students know basics of control-flow (for
and while statements), are comfortable with procedures, know how and when to use
arrays and structures, and understand the purposes of a type system. The student has
probably been exposed to recursion, but might not be proficient at using it. The same is
true for pointers. There may have been brief exposure to considerations behind choices of
data structures, the analysis of program run-time, and the relationship between language
constructs and their execution on physical processors. These things, as well as the
structure of processors and relation to logic design, are likely to be gray areas and so we
cover them from the beginning.

The student at this point is thus ready to tackle concepts addressed by this book, such as:

• information structures (lists, trees, directed graphs) from an abstract viewpoint,
independent of particular data structure implementations

• recursion as a natural problem-solving technique

• functional programming as an elegant and succinct way to express certain
specifications in an executable form

• objects and classes for expressing abstract data types

• underlying theoretical models that form the basis for computation

• inductive definitions and grammars for expressing language syntax and properties
of sequences, and their application to the construction of simple parsers and
interpreters from grammatical specifications

• proposition logic in specifying and implementing hardware systems and in
program optimization

• predicate logic in specifying and verifying systems, and directly in programming

 Introduction6

• advanced computing paradigms such as backtracking, caching, and breadth-first
search

• use of techniques for analysis of program run-time complexity and the
relationship to data-structure selection

• structure of finite-state machines how they extend to full processors

• assembly language, including how recursion is implemented at the assembly
language level

• introduction to parallel processing, multithreading, and networking

• introduction to theoretical limitations of computing, such as problems of
incomputability

These are among the topics covered in this book.

1.5 Structure of the Chapters

The chapters are described briefly as follows. There is more than adequate material for a
one-semester course, depending on the depth of coverage.

1. Introduction is the current chapter.

2. Information Structures discusses various types of information, such as lists, trees,
and directed graphs. We focus on the structure, and intentionally avoid getting into
much programming until the next chapter.

3 . High-Level Functional Programming discusses functions on the information
structures used previously. The emphasis here is on thinking about high-level,
wholesale, operations which can be performed on data.

4. Low-Level Functional Programming shows how to construct programs which carry
out the high-level ideas introduced in the previous chapter. A rule-based approach is
used, where each rule tries to express a thought about the construction of a function.
We go into simple graph-processing notions, such as shortest path and transitive
closure.

5. Implementing Information Structures presents methods of implementing a variety of
information and structures in Java, including many of the structures discussed in
earlier chapters.

6. States and Transitions discusses the basis of state-oriented computation, which is a
prolog to object-oriented computation. It shows how state can be modeled using the

Introduction 7

framework introduced in previous chapters. We show how conventional imperative
programs can be easily transformed into functional ones. We illustrate the idea of a
Turing machine and discuss its acceptance as a universal basis for computation.

7 . Object-Oriented Programming introduces object-oriented concepts for data
abstraction, using Java as the vehicle. We explore ideas of polymorphism, and
construct a model of polymorphic lists, matching the kind of generality available in
functional programming systems. We describe the implementation of higher-order
functions. We include a discussion of the uses of inheritance for normalizing software
designs.

8 . Grammars and Parsing introduces the concept of grammars for specifying
languages. It also shows the construction of simple parsers for such languages. The
idea here is that in many cases we have to solve not just one problem but rather an
entire family of problems. Indeed, we may need to provide such a language to a
community of users who do not wish to get involved with a general purpose
programming language. Inventing a language in which to express a family of
problems, and being able to construct an interpreter for that language, is viewed as a
helpful skill.

9. Proposition Logic begins with basic ideas of proposition logic from a functional point
of view. We the show role these ideas play in hardware design, and go into some of
the theory of simplification of logical expressions. Physical bases for computing are
mentioned briefly

10. Predicate Logic introduces predicate logic and demonstrate its use in specifying and
proving programs. We also show how predicate logic can be used for direct
programming of databases and other applications, using the Prolog language.

11. Complexity introduces the idea of measuring the running time of a program across a
wide spectrum of inputs. We use the "O" notation, defining it in a simplified way
appropriate to the application at hand, analyzing programs. We show how programs
can be analyzed when they are decomposed into sequential compositions, loops, and
recursion. We use sorting and searching applications for many of the examples. We
also mention hashing and related techniques.

12. Finite-State Machines introduces various finite-state machine models and how they
are implemented. We work our way into the implementation of simple digital sub-
systems based on finite-state machines. We conclude with a discussion of data
communication issues, such as the use of 3-state buffer devices.

13. Stored-Program Computing talks about the structure and programming of stored-
program computers from a fairly low level. This ties together programming concepts
and concepts from finite-state computing. We present a simulated computer, the ISC,
and its assembly language.

 Introduction8

14. Parallel Computing discusses issues related to performing multiple computations at
the same time. We review cellular automata, data-parallel computing, process-
oriented approaches, suitable for multiple-instruction-stream/multiple-data-stream
computers, and discuss the importance of this emerging area in the network-based
computers of the future.

15. Limitations of Computing mentions some of the logical and physical limitations of
computing. We discuss algorithmic lower bounds, the limitations of finite-state
machines, the notions of incomputability and intractability, and the glitch
phenomenon.

Figure 2 gives an approximate dependence among chapters.

1.6 How the Problems are Rated

We use a dot notation to visually suggest a problem's difficulty:

• G: Intended to be workable based on just an understanding of the prior readings.

•• PG: Intended to be workable based on an understanding of readings plus a little
effort.

••• PG13: Workable with a little effort and perhaps a hint or two.

•••• R: Intended for mature audiences; requires substantial effort and possibly extra
insight or perseverance.

••••• NC17: Obscenely difficult; might be the subject of a research paper, past or
future. Intended for perspective, not necessarily to be done in the mainstream of
the course.

Exercises

1 . •• Cite an example from your own experience of an abstraction and its
implementation.

2. ••• Identify some areas outside of computer science, such as in chemistry, music,
dance, etc. where abstractions are heavily used. Give details.

3. •••• Identify some areas outside of computer science where several levels of
abstraction are used.

Introduction 9

2. Information Structures

3. High-Level Functional Programming

4. Low-Level Functional Programming 6. States and Transitions

7. Object-Oriented Programming

8. Grammars9. Proposition Logic

10. Predicate Logic
11. Complexity12. Finite-State Machines

13. Stored-Program Computing

14. Parallel Computing

15. Limitations of Computing

5. Implementation of
Information Structures

Figure 2: Chapter Dependence

1.7 Further Reading

Each chapter lists relevant further reading. In many cases, original sources are cited,
which are sometimes not very light reading. We try to provide a qualitative estimate of
difficulty at the end of each annotation. The following tend to lighter surveys, which
cover some of the ideas in the text (as well as others) from different perspectives, but still
at a more-or-less less technical level.

 Introduction10

Alan W. Biermann, Great Ideas in Computer Science, M.I.T. Press, 1990. [A textbook
approach to introductory examples. Algorithms are presented in Pascal. Easy to
moderate.]

Glenn Brookshear, Computer Science – An Overview, Third Edition,
Benjamin/Cummings, 1991. [Easy.]

Richard P. Feynman, Feynman Lectures on Computation, Edited by J.G. Hey and Robin
W. Allen, Addison-Wesley, 1996. [A famous physicist talks about computation and
computer science; moderate.]

A.K. Dewdney, The (New) Turing Omnibus – 66 Excursions in Computer Science,
Computer Science Press, 1993. [Short (3-4 page) articles on a wide variety of computer
science topics. Algorithms are presented in pseudo-code. Easy to moderate.]

David Harel, Algorithmics – The Spirit of Computing, Addison-Wesley, 1987.
[Moderate.]

Anthony Ralston and Edwin D. Reilly, Encyclopedia of Computer Science, Van Nostrand
Reinhold, 1993.

1.8 Acknowledgment

The following is a partial list of individuals whom the author wishes to thank for
comments and corrections: Jeff Allen, James Benham, Jason Brudvik, Andrew Cosand,
Dan Darcy, Jason Dorsett, Zachary Dodds, Elecia Engelmann, Kris Jurka, Ran
Libeskind-Hadas, Eran Karmon, Geoffrey Kuenning, Stephen Rayhawk, David Rudel,
Chuck Scheid, Virginia Stoll, Chris Stone, Ian Weiner, and Wynn Yin.

