
3. High-Level Functional Programming

3.1 Introduction

This chapter focuses on functional programming, a very basic, yet powerful, paradigm in
which computation is represented solely by applying functions. It builds upon the
information structures in the preceding chapter, in that those structures are representative
of the kinds of structures used as data in functional programming. Some additional
characteristics of the functional programming paradigm are:

• Variables represent values, rather than memory locations.

• In particular, there are no assignment statements; all bindings to
variables are done in terms of definitions and function arguments.

• Data are never modified once created. Instead, data are created from
existing data by functions.

• Each occurrence of a given functional expression in a given context
always denotes a single value throughout its lifetime.

This last point is sometimes called “referential transparency” (although it might have
been equally well called “referential opacity”) since one cannot see or discern any
differences in the results of two different instances of the same expression.

A term often used for modifying the value of a variable is “side effect”. In short, in a
functional language there is no way to represent, and thus cause, side effects.

Some advantages that accrue from the functional style of programming are:

• Debugging a program is simpler, because there is no dependence on
sequencing among assignment statements. One can re-evaluate an
expression many times (as in debugging interactively) without fear
that one evaluation will have an effect on another.

• Sub-expressions of a program can be processed in parallel on several
different processors, since the meaning of an expression is inherent in
the expression and there is no dependence on expression sequencing.
This can produce a net speed-up of the execution, up to a factor of the
number of processors used.

• Storage is managed by the underlying system; there is no way to
specify allocation or freeing of storage, and the attendant problems
with such actions are not present.

58 High-Level Functional Programming

One does not need a functional language to program in a functional style. Most of the
principles put forth in this section can be applied to ordinary imperative languages,
provided that the usage is disciplined. Please note that while functional-programming has
much to recommend it, we are not advocating its exclusive use. It will later be combined
with other programming paradigms, such as object-oriented programming. It is difficult
to present functional programming in that context initially, because the key ideas tend to
become obscured by object-oriented syntax. For this reason we use the language rex
rather than other more common languages. Once the ideas are instilled, they can be
applied in whatever language the reader happens to be working.

3.2 Nomenclature

Before starting, it is helpful to clarify what we mean by function. We try to use this term
mostly in the mathematical sense, rather than giving the extended meaning as a synonym
for procedure as is done in the parlance of some programming languages.

A function on a set (called the domain of the function) is an entity that
associates, with each member of the set, a single item.

The key word above is single, meaning exactly one. A function never associates two or
more items with a given member of the domain, nor does it ever fail to associate an item
with any member of the domain.

We say the function, given a domain value, yields or maps to the value associated with it.
The syntax indicating the element associated with a domain element x, if f represents the
function, is f(x). However this is only one possible syntax of many; the key idea is the
association provided.

Examples of functions are:

• The add1 function: Associates with any number the number + 1. (The
domain can be any set of numbers).

• The multiply function: Associates with any pair of numbers the
product of the numbers in the pair. (The domain is a set of pairs of
numbers.)

• The reverse function: Associates with any list of elements another list
with elements in reverse order.

• The length function: Associates with any list a number giving the
length of the list.

• The father function: Associates with any person the person’s father.

High-Level Functional Programming 59

• The zero function: Associates with any value in its domain the value 0.

Note that there is no requirement that two different elements of the domain can't be
associated with a single value. That is, f(x) could be the same as f(y), even though x and y
might be bound to different values. This occurs, for example, in the case of the multiply
function: multiply(3, 4) gives the same value as multiply(4, 3). Functions that prohibit
f(x) from being the same as f(y) when x and y are bound to different values are called one-
to-one functions. Functions such as the zero function, which associates the same value
with all elements of the domain are called constant functions.

A related definition, where we will tend to blur the distinction with function as defined, is
that of partial function:

A partial function on a set is an entity that associates, with each member
of a set, at most one item.

Notice that here we have replaced “single” in the definition of “function” with “at most
one”. In the case of a partial function, we allow there to be no item associated with some
members of the set. In this book, the same syntax is used for functions and partial
functions. However, with a partial function f, it is possible to have no value f(x) for a
given x. In this case, we say that f(x) is undefined.

An example of a partial function that is not a function is:

The divide function: It associates with any pair of numbers the first
number divided by the second, except for the case where the second is 0,
in which case the value of the function is undefined.

An example of a partial function on the integers is a list:

A list may be viewed as a partial function that returns an element of the
list given its index (0, 1, 2, 3, ...). For any integer, there is at most one
element at that index. There is no element if the index is negative or
greater than N-1 where N is the length of the list. Finally, there must be no
“holes”, in the sense that the partial function is defined for all values
between 0 and N-1.

We will use the common notation

f: A → B

to designate that f is a partial function on set A, and that every value f(a) for a in A is in
the set B.

60 High-Level Functional Programming

Evidently, any partial function is a function over a sufficiently selective domain, namely
the set of values for which the partial function is defined. Another way to remove the
partial aspect is by defining a special element to indicate when the result would have
otherwise been undefined. For example, in the case of divide by 0, we could use
Infinity to indicate the result (rex does this). However, it is important to note than in
computational systems, there are cases where this scheme for removing the partial nature
of partial function can only be done for the sake of mathematical discussion; that is, we
cannot, in some cases, compute the fact that the result will be undefined. The
phenomenon to which we allude is non-termination of programs. While we often would
like to think of a program as representing a function on the set of all possible inputs, for
some inputs the program might not terminate. Moreover, it cannot always be detected
when the program will not terminate. So in general, programs represent partial functions
at best.

Two of the main ways to represent a partial function for computational purposes are: by
equation and by enumeration. When we say “by equation”, we mean that we give an
equation that defines the function, in terms of constants and simpler functions. Examples
in rex are:

f(x) = x*5;

g(x, y) = f(x) + y;

h(x) = g(f(x), 9);

Here *, +, 5, and 9 are symbols that are “built-in” to rex and have their usual meaning
(multiplication, addition, and two natural numbers). The semi-colon simply tells rex that
the definition stops there (rather than, say, continuing on the next line).

When we say “by enumeration”, we mean giving the set of pairs, the left elements of
which are the domain elements and the right elements the corresponding values of the
function. For example, we enumerate the add1 function on the domain {0, 1, 2, 3, 4} by
the list:

[[4, 5], [3, 4], [2, 3], [1, 2], [0, 1]]

Here we are treating a list as a set. Any reordering of the list would do as well.

While we can apply a function defined by equation by simply juxtaposing it with its
arguments, e.g.

rex > f(1);
5

rex > g(2, 3);
13

High-Level Functional Programming 61

we cannot do this in rex with a function enumerated by a list of pairs. We must instead
pass the list to another function, such as one that we call assoc (short for associate),
which will be described a bit later.

Likewise, we can go from a computed version of a function to an (internally) tabulated
version using an idea known as caching. Caching allows rex to possibly bypass re-
computing the function by first consulting the table. If the domain value is not present in
the table, it will compute it, then put it in the table.

Pragmatically, to cause caching to occur in rex, we issue a one-time directive, such as:

rex > sys(on, cache(f#1));

The # sign is used to identify the number of arguments to this particular function (since
different functions with different numbers of arguments can use the same function name,
the selection being determined by the number of arguments). So here we are causing
caching of the one-argument function with name f.

Another case of enumeration of a function occurs when the domain consists of
consecutive natural numbers from 0 to some value. In this case, we can list the
corresponding function values in order and apply the list. For example, in the preceding
example of the domain-limited add1 function, we could list the value (leaving the domain
implicit) as:

[1, 2, 3, 4, 5]

This list can be applied by merely juxtaposing it with an argument:

rex > [1, 2, 3, 4, 5](3);
4

Exercises

1. ••• Specify, by equation, a function that gives the area of a triangle given the lengths
of the sides as arguments. (Use Heron's formula, which may be found in various
mathematics references).

2. •• Specify, by enumeration, a function that gives the number of days in each month
in the year (assume 28 for February).

3.3 Using High-Level Functions

In the previous chapter, we used some of rex’s built-in functions such as length and
type to demonstrate properties of information structures. Later we will show how to
construct some functions on our own. First, however, we want to get more practice in
simply using functions. This will help in thinking at a relatively high level about
information structures and functions that use them and create them.

62 High-Level Functional Programming

Suppose we wish to create a list of numbers over a given range, where each number is 1
greater than its predecessor. To do this, we can use the function range that takes the
lower and upper limit of the range as its arguments:

rex > range(1, 10);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

rex > range(1.5, 9.5);
[1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5]

If we want the increment to be other than 1, we can use a three-argument version of
range that specifies the increment:

rex > range(0, 20, 2);
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

rex > range(20, 0, -2);
[20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0]

As can be seen above, in rex the same function name can be used to designate different
functions, based upon the number of arguments. The number of arguments is called the
arity of the function (derived from using n-ary to mean n arguments). The use of one
name for several different functions, the choice of which depends on the arity or the type
of arguments, is called overloading the function’s name.

Function scale multiplies the elements of an arbitrary list to produce a new list.

rex > scale(5, [1, 2, 20]);
[5, 10, 100]

As examples of functions on lists, we have prefix, which returns a specified-length
prefix of a sequence:

rex > prefix(4, [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]);
[1, 2, 3, 5]

antiprefix, which returns the sequence with the prefix of that length taken off:

rex > antiprefix(4, [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]);
[7, 11, 13, 17, 19, 23]

and suffix, which returns the last so many elements of the list.

rex > suffix(4, [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]);
[13, 17, 19, 23]

Function remove_duplicates returns a list of the elements in the argument list, with
subsequent duplicates removed:

rex > remove_duplicates([1, 2, 3, 2, 3, 4, 3, 4, 5]);

High-Level Functional Programming 63

[1, 2, 3, 4, 5]

Function zip interlaces elements of two lists together, as if they were the two sides of a
zipper:

rex > zip([1, 3, 5, 7], [2, 4, 6]);
[1, 2, 3, 4, 5, 6, 7]

Function reverse reverses elements of a list:

rex > reverse([1, 2, 3, 4, 5]);
[5, 4, 3, 2, 1]

Function append appends the elements of the second list to those of the first:

rex > append([1, 2, 3, 4], [5, 6]);
[1, 2, 3, 4, 5, 6]

Sorting Lists

Another high-level function is sort, which sorts its argument list into ascending order:

rex > sort(["peas", "beans", "oats", "barley"]);
[barley, beans, oats, peas]

When we do this with functional programming, we are not modifying the original list.
Instead, we are creating a new list from the original. To verify this using rex:

rex > L = ["peas", "beans", "oats", "barley"];
1

rex > M = sort(L);
1

rex > M;
[barley, beans, oats, peas]

rex > L;
[peas, beans, oats, barley]

We can see that L has not changed from the original.

Function sort will also work when the list’s elements are lists. It uses the idea of
lexicographic ordering to compare any two elements. Lexicographic ordering is like
dictionary ordering extended to any ordered set, such as the set of numbers. For example,
the empty list [] is < than any other list. One non-empty list is < another provided that
the first element of one is < the other or the first elements are equal and the rest of the
first list is < the rest of the second. For example:

rex > [1,2,3] < [1,2,4];

64 High-Level Functional Programming

1

rex > [1,2,3] < [1,4];
1

rex > [1,2] < [1,1,2];
0

Notice that it is this same principle that allows us to sort a list of words, as if the words
were lists of characters.

In rex, numbers are < strings, and strings are < lists, but this is somewhat arbitrary. The
purpose of it is for certain algorithms such as removing duplicates, where an ordering is
helpful.

Finding Things in Lists

A couple of frequently-used functions that can be used to tell us things about the contents
of lists are member and assoc. Function member is a predicate that tells whether a specific
item occurs in a list: member(E, L) returns 1 if E occurs in L and returns 0 otherwise. For
example,

rex > member(99, range(90, 100));
1

rex > member(99, range(90, 95));
0

Function assoc applies to a special kind of list called an association list, a list of lists,
each with at least one element. Usually this will be a list of pairs representing either a
dictionary or a binary relation. The purpose of assoc is to find an element in an
association list having a specified first element. If the list is a dictionary, we can thus use
assoc to find the meaning of a given word. As an example,

rex > assoc(5, [[4, 16], [5, 25], [6, 36], [7, 49]]);
[5, 25]

Note that by definition of an association list, if an element is found, the returned value
will always be non-empty (because each list is supposed to have at least one element in
it). Thus we can use the empty list as a returned value to indicate no element was found:

rex > assoc(3, [[4, 16], [5, 25], [6, 36], [7, 49]]);
[]

High-Level Functional Programming 65

Typically the association list represents an enumerated partial function, which, as we
stated earlier, is a binary relation such that no two different pairs in the relation have the
same first element. For example,

[[5, “apple”], [6, “banana”], [10, “grapefruit”]]

is a partial function, whereas

[[5, “apple”], [6, “banana”], [10, “grapefruit”], [6, “orange”]
]

is not, because in the latter there are two pairs with first component 6. However, even if
the list were not a partial function, assoc treats it as if it were by only returning the first
pair in the list that matches the argument and ignoring the rest of the pairs. If one wanted
to verify that the pair was unique, one could use function keep to find out.

Implementing Ordered Dictionaries

An ordered dictionary associates with each item in a set (called the set of keys) another
item, the “definition” of that item. An implementation of an ordered dictionary is a list of
ordered pairs, where a pair is a list of two elements, possibly of different types. The first
element of each pair is the thing being defined, while the second is its. For example, in
the following ordered dictionary implementation, we have musical solfege symbols and
their definitions. Each definition is a list of words:

 [["do", ["a", "deer", "a", "female", "deer"]],
 ["re", ["a", "drop", "of", "golden", "sun"]],
 ["me", ["a", "name", "I", "call", "myself"]],
 ["fa", ["a", "long", "long", "way", "to", "run"]],
 ["so", ["a", "needle", "pulling", "thread"]],
 ["la", ["a", "note", "that", "follows", "sol"]],
 ["ti", ["a", "drink", "with", "jam", "and", "bread"]]
]

Exercises

1. •• Using the functions presented in this section, along with arithmetic, give a one-
line rex definition of the following function:

infix(I, J, L) yields elements I through J of list L, where the first element is
counted as element 0. For example,

rex > infix(1, 5, range(0, 10));
[1, 2, 3, 4, 5]

2. •• An identity on two functional expressions indicates that the two sides of the
expression are equal for all arguments on which one of the two sides is defined.
Which of the following identities are correct?

66 High-Level Functional Programming

append(L, append(M, N)) == append(append(L, M), N)

reverse(reverse(L)) == L

reverse(append(L, M)) == append(reverse(L), reverse(M))

sort(append(L, M)) == append(sort(L), sort(M))

reverse(sort(L)) == reverse(L)

sort(reverse(L)) == sort(L)

[A | append(L, M)] == append([A | L], M)

reverse([A | L]) == [A | reverse(L)]

reverse([A | L]) == [reverse(L) | A]

reverse([A | L]) == append(reverse(L), [A])

3. ••• Two functions of a single argument are said to commute provide that for every
argument value X, we have f(g(X)) == g(f(X)). Which pairs of functions
commute?

sort and remove_duplicates

reverse and remove_duplicates

sort and reverse

3.4 Mapping, Functions as Arguments

An important concept for leveraging intellectual effort in software development is the
ability to use functions as arguments. As an example of where this idea could be used, the
process of creating a list by doing a common operation to each element of a given list is
called mapping over the list. Mapping is an extremely important way to think about
operations on data, since it captures many similar ideas in a single high-level thought.
(The word mapping is also used as a noun, as a synonym for function or partial function;
this is not the use for the present concept.) Later on we will see how to define our own
mapping functions. One of the attractive uses of high-level functions is that we do not
over-specify how the result is to be achieved. This leaves open many possibilities for the
compiler to optimize the performance of the operation.

The function map provides a general capability for mapping over a single sequence. For
example, suppose we wish to use mapping to create a list of squares of a list of numbers.
The first argument to the function map is itself a function. Assume that sq is a function
that squares its argument. Then the goal can be accomplished as follows:

rex > map(sq, [1, 7, 5, 9]);
[1, 49, 25, 81]

High-Level Functional Programming 67

Likewise, one way to create a list of the cubes of some numbers would be to define a
function cube (since there isn’t a built in one) and supply that as an argument to map. In
rex, a function can be defined by a single equation, as shown in the first line below. We
then supply that user-defined function as an argument to map:

rex > cube(X) = X*X*X;
1

rex > map(cube, [1, 7, 5, 9]);
[1, 343, 125, 729]

There is also a version of map that takes three arguments, the first being a function and
the latter two being lists. Suppose that we wish to create a list of pairs of components
from two argument lists. Knowing that function list will create a list of its two given
arguments, we can provide list as the first argument to map:

rex > map(list, [1, 2, 3], [4, 5, 6]);
[[1, 4], [2, 5], [3, 6]]

A function such as map that takes a function as an argument is called a higher-
orderfunction.

3.5 Anonymous Functions

A powerful concept that has a use in conjunction with map is that of anonymous function.
This is a function that can be created by a user or programmer, but which does not have
to be given a name.

As a simple example of an anonymous function, suppose we wish to create a list by
adding 5 to each element of a given list. We could do this using map and an “add 5”
function. The way to define an “add 5” function without giving it a name is as follows:

(X) => X + 5

This expression is read:

the function that, with argument X, returns the value of X + 5.

The “arrow” => identifies this as a functional expression.

We apply the anonymous function by giving it an argument, just as with any other
function. Here we use parentheses around the functional expression to avoid ambiguity:

((X) => X + 5)(6)
function argument

68 High-Level Functional Programming

Here the function designated by (X) => X + 5 is applied to the actual argument 6. The
process is that formal argument X gets bound to the actual argument 6. The body, with
this identification, effectively becomes 6 + 5. The value of the original expression is
therefore that of 6 + 5, i.e. 11.

Here is another example, an anonymous function with two arguments:

((X, Y) => Y - X)(5, 6)

The function designated by (X, Y) => Y - X is applied to the actual pair of arguments
(5, 6). Formal argument X is bound to 5, and Y to 6. The result is that of 6 - 5, i.e. 1.

A common use of such anonymous expressions is in conjunction with functions such as
map. For example, in order to cube each element of a list L above, we provided a function
cube as the first argument of the function map, as in map(cube, L). In some cases, this
might be inconvenient. For example, we'd have to disrupt our thought to think up the
name "cube". We also "clutter our name-space" with yet another function name. The use
of such an anonymous function within map then could be

rex > map((X) => X*X*X, range(1, 5));
[1, 8, 27, 64, 125]

Anonymous functions can have the property that identifiers mentioned in their
expressions can be given values apart from the parameters of the function. We call these
values imported values. In the following example

 ((X) => X + Y)(6)

Y is not an argument. It is assumed, therefore, that Y has a value defined from its context.
We call this a free variable as far as the functional expression is concerned. For example,
Y might have been given a value earlier. The function designated by (X) => X + Y is
applied to the argument 6. The result of the application is the value of 6 + Y. We need to
know the value of Y to simplify it any further. If Y had the value 3, the result would be 9.
If Y had been given no value, the result would be undefined (rex would complain about Y
being an unbound variable).

Here is an application of the idea of imported values. Consider defining the function
scale that multiplies each element of a list by a factor. Since this is a map -like concept,
the hope is we could use map to do it. However, to do so calls for an anonymous function:

scale(Factor, List) = map((X) => Factor*X, List);

Here X represents a "typical" element of the list, which is bound to values in the list as
map applies its function argument to each of those elements. The variable Factor, on the
other hand, is not bound to values in the list. It gets its value as the first argument to
function scale and that value is imported to the anonymous function argument of map.

High-Level Functional Programming 69

As a still more complex anonymous function example, consider:

((F) => F(6))((X) => X * 3)

Here the argument F to the functional expression (F) => F(6) is itself a functional
expression (X) => X * 3. We identify the formal argument F with the latter, so the body
becomes ((X) => X * 3)(6). We can then simplify this expression by performing the
application indicated, with X identified with 6, to get 6*3, which simplifies to 18.

In computer science, another, less readable, notation is often used in place of the
=> notation we use to define anonymous functions. This is called "lambda notation",
"lambda abstraction", or Church's lambda calculus. Instead of the suggestive
(X) => Y*X - 1, lambda notation prescribes λX.(Y*X - 1). In other words, the prefix
λ takes the place of the infix =>.

3.6 Functions as Results

An interesting aspect about anonymous functions is that they can be returned as results.
Consider

(Y) => ((X) => X + Y)

This is read

“the function that, with argument Y, returns:

the function that, with argument X, returns the value of X + Y”

In other words, the first function mentioned returns a function as its value. The second
outer parentheses can be omitted, as in

(Y) => (X) => X + Y

because grouping around => is to the right. Obviously we are again applying the idea of
an imported variable, since the value of Y is not an argument but rather is imported to the
inner expression.

When we apply such a function to a number such as 9, the result is a function, namely the
function represented by

(X) => X + 9

What happens, for example, when we map a function-returning function over a list of
numbers? The result is a list of functions:

rex > map((Y) => (X) => X + Y, [5, 10, 15]);
[(X) => (X+5), (X) => (X+10), (X) => (X+15)]

70 High-Level Functional Programming

While the idea of a list of functions might not be used that often, it is an interesting to
exercise the concept of one function returning another. The point here is to get used to
thinking of functions as whole entities in themselves.

Suppose we wanted to apply each of the functions in the list above to a single value, say
9. We could use map to do that, by mapping a function with a function argument:

(F) => F(9)

is, of course, the function that with argument F returns the result of applying F to 9. When
we map this function over the previous result, here’s what we get:

rex > L = map((Y) => (X) => X + Y, [5, 10, 15]);
1

rex > map((F)=>F(9), L);
[14, 19, 24]

Consider the problem of making a list of all possible pairs of two given lists. For
example, if the lists were:

[1, 2, 3, 4] and [96, 97, 98]

then we want the result to be something like

[[1, 96], [1, 97], [1, 98], [2, 96], [2, 97], [2, 98],
 [3, 96], [3, 97], [3, 98], [4, 96], [4, 97], [4, 98]]

Note that this is quite different from the result of

map(list, L)

discussed earlier. We solve this problem by first considering how to make all pairs of a
given element, say X, with each element of the second list, say M. This can be
accomplished by using map:

map((Y) => [X, Y], M)

Now we make a function that does this mapping, taking X as its argument:

(X) => map((Y) => [X, Y], M)

Now consider mapping this function over the first list L:

map((X) => map((Y) => [X, Y], M), L)

For the present example, this doesn't quite do what we want. The result is a list of lists of
pairs rather than a list of pairs:

High-Level Functional Programming 71

[[[1, 96], [1, 97], [1, 98]],
 [[2, 96], [2, 97], [2, 98]],
 [[3, 96], [3, 97], [3, 98]],
 [[4, 96], [4, 97], [4, 98]]]

Instead of the outer application of map, we need to use a related function mappend (map,
then append) to produce the list of all the second level lists appended together:

mappend((X) => map((Y) => [X, Y], M), L)

Let’s try it:

rex > L = [1, 2, 3, 4];
1

rex > M = [96, 97, 98];
1

ex > mappend((X) => map((Y) => [X, Y], M), L);

[[1, 96], [1, 97], [1, 98], [2, 96], [2, 97], [2, 98],
 [3, 96], [3, 97], [3, 98], [4, 96], [4, 97], [4, 98]]

We can package such useful capabilities as functions by using the expression in a
function-defining equation.

pairs(L, M) = mappend((X) => map((Y) => [X, Y], M), L);

3.7 Composing Functions

Suppose we wish to construct a function that will take two other functions as arguments
and return a function that is the composition of those functions. This can be accomplished
using the following rule:

compose(F, G) = (X) => F(G(X));

We could alternatively express this as a rule using a double layer of arguments:

compose(F, G)(X) = F(G(X));

Let’s try using compose in rex:

rex > compose(F, G) = (X) => F(G(X));
1

rex > square(X) = X*X;
1

rex > cube(X) = X*X*X;
1

72 High-Level Functional Programming

rex > compose(square, cube)(2);
64

rex > compose(cube, square)(2);
64

rex > compose(reverse, sort)([3, 5, 1, 2, 6, 7]);
[7, 6, 5, 3, 2, 1]

rex > map(compose(square, cube), range(1, 10));
[1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, 1000000]

In mathematical texts, the symbol o is often used as an infix operator to indicate
composition:

compose(F, G) ≡ F o G

The following diagram suggests how compose works. It in effect splices the two
argument functions together into a single function.

f

g

compose

f

g

arguments
result

Figure 31: Diagram of the action of the function-composing function compose

3.8 The Pipelining Principle

A key design technique in computer science and engineering involves the decomposition
of a specified function as a composition of simpler parts. For example, in the UNIX
operating system, single application programs can be structured as functions from a
stream of input characters to a stream of output characters. The composition of two such
functions entails using the output stream of one program as input to another. The result
behaves as a program itself, and can be further composed in like fashion. One can regard
this style of programming as building a pipeline connecting stages, each stage being an
application program. Indeed, the operator for constructing such pipelines is known as
"pipe" and shown as a vertical bar |. If P, Q, and R are programs, then

P | Q | R

High-Level Functional Programming 73

defines the composition that connects the output of P to the input of Q and the output of
Q to the input of R. The overall input then is the input to P and the output is the output of
R. In terms of the function composition notation introduced earlier, we have R o (Q o P).

The pipelining principle is pervasive in computer science. Not only is it used in the
construction of software; it is also extremely important at low levels of processor design,
to enable parts of successive instructions to execute simultaneously. In later discussion,
we will extend the idea of function composition to allow us to derive function
composition networks of arbitrary structure.

3.9 Functions of Functions in Calculus (Advanced)

The failure to differentiate expressions from functions can be the source of confusion in
areas such as differential and integral calculus, where it is easy to forget that functions,
not numbers, are generally the main focus of discussion. For example, we are used to
seeing equations such as

d
dx sin x = cos x

What is really meant here is that the result of operating on a function, sin, is another
function, cos. The use of x is really irrelevant. It might have been less confusing to state

derivative(sin) = cos

and leave the dummy argument x out of the picture. A step in the right direction is to use
the "prime" notation, wherein the derivative of a function f is shown as f '. But then we
don't often see written equalities such as

sin' = cos
even though this, coupled with a proper understanding of functions as entities, would be
less confusing than the first equation above.

As an example of the confusion, consider the chain rule in calculus, which can be
correctly expressed as

(f o g)' (x) = f ' (g(x)) * g' (x)

Using the d/dx notation, the chain rule cannot be expressed as nicely. If we are willing to
define the product of two functions to be the function whose value for a given x is the
product of the values of the individual functions, i.e.

(f * g)(x) = f(x) * g(x)

then the chain rule can be nicely expressed as:

74 High-Level Functional Programming

(f o g)' = (f ' o g) * g'

Translated to English, this statement says that the derivative of the composition of two
functions is equal the product of the derivative of the second function and the
composition of the derivative of the first function with the second function.

Exercises

1. • Create a function that cubes every element of a list, using map as your only named
function.

2. •• Describe the functions represented by the following functional expressions:

a. (X) => X + 1

b. (Y) => Y + 1

c. (X) => 5

d. (F) => F(2)

e. (G, X) => G(X,X)

f. (X, Y) => Y(X)

3. •• Argue that compose(F, compose(G, H)) == compose(compose(F, G), H), i.e.
that composition is associative. Written another way, F o (G o H) ≡ (F o G) o H.
This being the case, we can eliminate parentheses and just write F o G o H.

4. ••• Express the calculus chain rule for the composition of three functions:

(F o G o H)' = ??

5. •• In some special cases, function composition is commutative, that is (F o G) ≡
(G o F). Give some examples of such cases. (Hint: Look at functions that raise their
argument to a fixed power.)

6. •• Give an example that shows that function composition is not generally
commutative.

7. •• Which functional identities are correct?

a. map(compose(F, G), L) == map(F, map(G, L))

b. map(F, reverse(L)) == reverse(map(F, L))

c. map(F, append(L, M)) == append(map(F, L), map(F, M))

High-Level Functional Programming 75

3.10 Type Structure

A concern that occupies many computer scientists is that of the types of data and
functions that operate on that data. The language we have been using so far, rex, is rather
"loose" in its handling of types. This has its purpose: we don't wish to encumber the
discussion with too many nuances at one time. Nonetheless, it is helpful to have a way to
talk about expected types of data in functions; it helps us understand the specification of
the function.

The basic types of most programming languages include:

integer numerals
characters or character strings
floating-point numerals

In order to provide a safe computational system, rex has to be able to discern the type of a
datum dynamically: Although a rex variable is not annotated with any type, the basic
operations in rex use the type of the data. For example, the + operator applies to integers
or floating-point numerals, but not to character strings. Nothing prevents us from trying
to use + on strings, but doing so will result in a run-time error that terminates the
computation. Thus it is important that the programmer be aware of the type likely to be
passed to a function. The rex language includes some built-in predicates for determining
the type of data. For example, the predicate is_number establishes whether its argument
is either an integer or floating point. The predicate is_integer establishes whether its
argument is integer. The programmer can use these predicates to steer clear of run-time
type errors.

It is common to treat data types as sets and to assert the type of functions using the
customary domain-range notation on those sets. For example:

f: integer x integer → integer

asserts that function (or partial function) f takes two integer arguments and returns an
integer.

In general, A x B, where A and B are sets, means the set of all pairs, the first element
drawn from A and the second from B. This is called the Cartesian product of the sets.
For example, the Cartesian product is computed by the function pairs worked out
earlier.

In dealing with types, we use | to mean union, i.e. to describe elements that can be one of
two different types. For example,

g: (integer | float) x integer → float

76 High-Level Functional Programming

describes a function g, the first argument of which can be an integer or a float.

We often see type equations used to define intermediate classes. For example, we could
define the type numeric to be the union of integer and float thus:

numeric = integer | float

We could also use equations to define types for functions:

binary_numeric_functions = (numeric x numeric) → numeric

treating the usual arrow notation as defining a set of functions.

Perhaps more important than the particular choice of basic types is the means of dealing
with composite or aggregate types. The fundamental aggregation technique in rex is
creating lists, so we could enlist the * notation to represent lists of arbitrary type things.
For example,

integer*

could represent the type of lists of integers. Then

integer**

would represent the type of lists of lists of integers, etc. Since rex functions do not, in
general, require their argument to be of any specific type, it is helpful to have a
designation for the union of all types. This will be called any. For example, the type of
the function length that counts the number of items in a list, is:

length: any* → integer

since this function pays absolutely no attention to the types of the individual elements in
the argument list. On the other hand, some functions are best described using type
variables. A good example is the function map that takes two arguments: a list of elements
and a function. The domain of that function must be of the same type as the elements in
the list. So we would describe map by

map: ((A → B) x A*) → B* where A and B are arbitrary types

A function such as map that operates on data of many different types is called
polymorphic.

Function compose is a polymorphic function having following type:

((B → C) x (A → Β)) → (A → C)

High-Level Functional Programming 77

where A, B, and C are any three types.

Notice that although anonymous functions don't have names, we can still specify their
types to help get a better understanding of them. For example, the type of (X)=>X*X is:

numeric → numeric

The set of lists permitting arbitrary nesting, which we have already equated to trees,

deserves another type designator. If A is a type, then let's use A† to designate the type

that includes A, lists of A, lists of lists of A, and so on, ad infinitum. In a sense, A† obeys
the following type equation:

A† = A | (A†)*

That is to say A† is the set that contains A and all lists of things of type A†. We shall
encounter objects of this type again in later chapters when we deal with so called
"S expressions".

We should cultivate the habit of checking that types match whenever a function is
applied. For example, if

f: A → B

then, for any element a of type A, we know that f(a) is an element of type B.

Exercises

1. • Describe the types of the following functions:

a. (X) => X + 1

b. (Y) => Y + 1

c. (X) => 5

d. (F) => F(2)

e. (G, X) => G(X,X)

f. (X, Y) => Y(X)

2. •• Describe the type structure of the following functions that have been previously
introduced:

a. range

b. reverse

c. append

78 High-Level Functional Programming

3.11Transposing Lists of Lists

In a previous section, we showed how to use map to pair up two lists element-wise:

rex > map(list, [1, 2, 3], [4, 5, 6]);
[[1, 4], [2, 5], [3, 6]]

Another way to get the effect of pairing elements would be to cast the problem as an
instance of a more general function transpose. This function would understand the
representation of matrices as lists of lists, as described in the previous chapter. By giving
it a list of the two argument lists above, we get the same result, pairing of corresponding
elements in the two lists. What we have done, in terms of the matrix view, is transposed
the matrix, meaning exchanging the rows and columns in the two-dimensional
presentation. For example, the transpose of the matrix

1 2 3
4 5 6

is

1 4
2 5
3 6

Using a list of lists, the transposition example would be shown as:

rex > transpose([[1, 2, 3], [4, 5, 6]]);
[[1, 4], [2, 5], [3, 6]]

However, transpose is more general than a single application of map in being able to
deal with matrices with more than two rows, for example.

rex > transpose([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
 [10, 11, 12]]);

[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]

The effect could be achieved with a double application of map, but to do so is a little
tricky.

Exercises

1. • Give the type of function transpose.

2. •• Give the type of function mappend defined earlier.

High-Level Functional Programming 79

3.12 Predicates

By a predicate, we mean a function to be used for discrimination, specifically in
determining whether its arguments have a certain property or do not. Here we will use 1
(representing true) to indicate that an argument has the property, and 0 (also called false)
otherwise, although other pairs of values are also possible, such as {yes, no}, {red,
black}, etc. The arity of a predicate is the number of arguments it takes.

A simple example is the 2-ary predicate that we might call less, of two arguments, for
example less(3, 5) == 1, less(4, 2) == 0, etc. Informally, less(x, y) is 1
whenever x is less than y, and 0 otherwise. We are used to seeing this predicate in infix
form (with the symbol < between the arguments), i.e. x < y instead of less(x, y). We
could also use the symbol < instead of the name less in our discussion. Actually this is
the name by which rex knows the predicate.

rex > map(<, [1, 2, 4, 8], [2, 3, 4, 5]);
[1, 1, 0, 0]

When an argument combination makes a predicate true, we say that the combination
satisfies the predicate. This is for convenience in discourse.

Some functions built into rex expect predicates as arguments. An example is the function
some: if P is a predicate and L is a list, then some(P, L), returns 1 if some element of list
L satisfies predicate P, and 0 otherwise. For example, is_prime is a predicate that gives
the value 1 exactly if its argument is a prime number (a number that has no natural
number divisors other than 1 and itself). We can ask whether any member of a list is
prime using some in combination with is_prime. For example:

rex > some(is_prime, [4, 5, 6]);
1

rex > some(is_prime, [4, 6, 8, 10]);
0

Here 5 is the only prime. Note that some itself is a predicate. It would be called a higher-
order predicate, because it takes a predicate as an argument. It could also be called a
quantifier, since it is related to a concept in logic with that name. We shall discuss
quantifiers further in a later chapter. A related quantifier is called all. The expression
all(P, L) returns 1 iff all elements of L satisfy P. For example:

rex > all(is_prime, [2, 3, 5, 7]);
1

Often we want to know more than just whether some element of a list satisfies a predicate
P; we want to know the identity of those elements. To accomplish this, we can use the
predicate keep. The expression keep(P, L) returns the list of those elements of L that
satisfy P, in the order in which they occur in L. For example:

80 High-Level Functional Programming

rex > keep(is_prime, [2, 3, 4, 5, 6, 7, 8, 9]);
[2, 3, 5, 7]

Note that if sets are represented as lists, keep gives a facility like set selection in
mathematics.

{x ∈ S | P(x) }

(read “the set of x in S such that P(X) is true”) is analogous to:

keep(P, S)

where we are representing the set S as a list. Function keep gives us a primitive database
search facility: the list could be a list of lists representing records of some kind. Then
keep can be used to select records with a specific property. For example, suppose our
database records have the form

[Employee, Manager, Salary, Department]

with an example database being:

DB = [["Jones", "Smith", 25000, "Development"],
 ["Thomas", "Smith", 30000, "Development"],
 ["Simpson", "Smith", 29000, "Development"],
 ["Smith", "Evans", 45000, "Development"]];

Then to pose the query “What records correspond to employees managed by Smith with a
salary more than 25000, we could ask rex:

rex > keep((Record) => second(Record) == "Smith"
 && third(Record) > 25000, DB);

[[Thomas, Smith, 30000, Development],
 [Simpson, Smith, 29000, Development]]

This could be made prettier by using pattern matching, however we have not yet
introduced pattern matching in the context of anonymous functions and don’t wish to
digress to do so at this point.

The complementary predicate to keep is called drop. The expression drop(P, L)
returns the list of elements in L that do not satisfy P:

rex > drop(is_prime, [2, 3, 4, 5, 6, 7, 8, 9]);

High-Level Functional Programming 81

[4, 6, 8, 9]

Sometimes we are interested in the first occurrence of an element satisfying a particular
predicate, and might make use of the other occurrences subsequently. The predicate find
gives us the suffix of list L beginning with the first occurrence of an element that satisfies
P. If there are no such elements, then it will give us the empty list:

rex > find(is_prime, [4, 6, 8, 11, 12]);
[11, 12]

rex > find(is_prime, [12, 14]);
[]

The predicate find_indices gives us a list of the indices of all elements in a list which
satisfy a given predicate:

rex > find_indices(is_prime, range(1, 20));
[0, 1, 2, 4, 6, 10, 12, 16, 18]

rex > find_indices(is_prime, range(24, 28));
[]

Exercises

1. • Suppose L is a list of lists. Present an expression that will return the lists of elements
in L having length greater than 5.

2. ••• Present as many functional identities that you can among the functions keep,
find_indices, map, append, and reverse, excluding those presented in earlier
exercises.

3. ••• Show how to use keep and map in combination to define a function gather that
creates a list of second elements corresponding to a given first element in an
association list. For example,

rex > gather(3, [[1, "a"], [2, "b"], [3, "c"], [1, "d"],
 [3, "e"], [3, "f"], [2, "g"], [1, "h"]]);
[c, e, f]

4. ••• Then define a second version of gather that gathers the second components of all
elements of an association list together:

rex > gather ([[1, "a"], [2, "b"], [3, "c"], [1, "d"],
 [3, "e"], [3, "f"], [2, "g"], [1, "h"]]);
[[1, a, d, h], [2, b, g], [3, c, e, f]]

82 High-Level Functional Programming

3.13 Generalized Sorting

A variation on the function sort has an additional argument, which is expected to be a
binary predicate. This predicate specifies the comparison between two elements to be
used in sorting. For example, to sort a list in reverse order:

rex > sort(>, [6, 1, 3, 2, 7, 4, 5]);
[7, 6, 5, 4, 3, 2, 1]

The ability to specify the comparison predicate is useful for specialized sorting. For
example, if we have a list of lists of the form

[Person, Age]

and wish to sort this list by age, rather than lexicographically, we could supply a
predicate that compares second elements of lists only:

(L, M) => second(L) < second(M).

Let’s try this:

rex > Data =
 [["John", 25], ["Mary", 24], ["Tim", 21], ["Susan", 18]];
1

rex > sort((L, M) => second(L) < second(M), Data);
[[Susan, 18], [Tim, 21], [Mary, 24], [John, 25]]

In the next chapter, we will show some details for how lists can be sorted.

3.14 Reducing Lists

By reducing a list, we have in mind a higher-order function in a spirit similar to map
introduced earlier. As with map, there are many occasions where we need to produce a
single value that results from applying a binary function (i.e. 2-argument function, not be
confused with binary relation or binary number representation introduced earlier) to
elements of a list. Examples of reducing include adding up the elements in a list,
multiplying the elements of a list, etc. In abstract terms, each of these would be
considered reducing the list by a different binary operation.

For completeness, we need to say what it means to reduce the empty list. Typically
reducing the empty list will depend on the operator being used. It is common to choose
the mathematical unit of the operation, if it exists, for the value of reducing the empty
list. For example, the sum of the empty list is 0 while the product is 1. The defining
characteristic of the unit is that when another value is combined with the unit using the
binary operator, the result is that other value:

High-Level Functional Programming 83

For any number x:

0 + x == x

1 * x == x

The function reduce performs reductions based on the binary operator, the unit or other
base value, and the list to be reduced:

rex > r = range(1, 10);
1

rex > r;
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

rex > reduce(+, 0, r);
55

That is, 55 is the sum of the natural numbers from 1 to 10.

rex > reduce(*, 1, r);
3628800

That is, 3628800 is the product of the natural numbers from 1 to 10.

Suppose we wished to create a single list out of the elements present in a list of lists. For
two lists, the function that does this is called append:

rex > append([1, 2, 3], [4, 5]);
[1, 2, 3, 4, 5]

For a list of lists, we can use the higher-order function reduce with append as its
argument. However, we have to decide what the unit for append is. We are looking for a
value U such that for any list L

append(U, L) == L

That value is none other than the null list []. So to append together an arbitrary list of
lists L, we can use

reduce(append, [], L)

For example,

rex > reduce(append, [], [[1, 2], [3, 4, 5], [], [6]]);
[1, 2, 3, 4, 5, 6]

Actually there are at least two different ways to reduce a list: since the operator operates
on only two things at a time, we can group pairs starting from the right or from the left.
Some languages make this distinction by providing two functions, foldl and foldr, with
the same argument types as reduce. For example, if the operator is +, then

84 High-Level Functional Programming

foldl(+, 0, [x0, x1, x2, x3, x4])

evaluates in the form

((((0 + x0) + x1) + x2) + x3) + x4

whereas

foldr(+, 0, [x0, x1, x2, x3, x4])

evaluates in the form

x0 + (x1 + (x2 + (x3 + (x4 + 0))))

We can show this idea with rex by inventing a “symbolic” operator op that displays its
arguments:

rex > op(X, Y) = concat("op(", X, ",", Y, ")");
1

rex > foldl(op, "unit", ["x0", "x1", "x2", "x3", "x4"]);
op(op(op(op(op(unit,x0),x1),x2),x3),x4)

rex > foldr(op, "unit", ["x0", "x1", "x2", "x3", "x4"]);
op(x0,op(x1,op(x2,op(x3,op(x4,unit)))))

Note that the base value in this example is not the unit for the operator.

Currently, rex uses the foldl version for reduce, but this is implementation-defined. For
many typical uses, the operator is associative, in which case it does not matter which
version is used. If it does matter, then one should use the more specific functions.

Exercises

1. •• Suppose we wish to regard lists of numbers as vectors. The inner product of two
vectors is the sum of the products of the elements taken element-wise. For example,
the “inner product” of [2, 5, 7], [3, 2, 8] is 2*3 + 5*2 + 7*8 ==> 72. Express
an equation for the function inner_product in terms of map and reduce.

2. • Show that the rex predicate some can be derived from keep.

3. •• Suppose that P is a 1-ary predicate and L is a list. Argue that

some(P, L) == !all((X) => !P(X), L)

In other words, P is satisfied by some element of L if, and only if, the negation of
P is not satisfied by all elements of L.

4. •• Show that the rex predicate drop can be derived from keep.

High-Level Functional Programming 85

5. •• Using reduce, construct a version of compose_list that composes an arbitrary
list of functions. An example of compose_list is:

compose_list([(A)=>A*A, (A)=>A+1, (A)=>A-5])(10) ==> 36

Hint: What is the appropriate unit for function composition?

6. •• Which of the following expressions is of the proper type to reproduce its third
argument list L?

a. foldl(cons, [], L)
b. foldr(cons, [], L)

3.15 Sequences as Functions

In computer science, it is important to be aware of the following fact:

Every list can be viewed as a partial function on the domain of natural numbers
(0, 1, 2, 3, ...).

When the list is infinite, this partial function is a function.

That is, when we deal with a list [x
0
, x

1
, x

2
, ...] we can think of this as the following

function represented as a list of pairs:

 [[0, x
0
], [1, x

1
], [2, x

2
], ...]

In the case that the list is finite, of length N, this becomes a partial function on the natural
numbers, but a total function on the domain {0, 1,, N-1}.

This connection will become more important in subsequent chapters when we consider
arrays, a particular sequence representation that can also be modeled as a function. The
thing that it is important to keep in mind is that if we need to deal with functions on the
natural numbers, we can equivalently deal with sequences (lists, arrays, etc.).

In rex, special accommodation is made for this idea, namely a sequence can be applied
as if it were a function. For example, if x denotes the sequence [0, 1, 4, 9, 16, 25,] then
x(2) (x applied to 2) is 4, x(3) is 9, etc. Moreover, rex sequences need not be only lists;
they can also be arrays. An array applied to an argument gives the effect of array
indexing.

One way to build an array in rex is to just give the elements of the array to the function
array:

86 High-Level Functional Programming

array(a0, a1,, an-1)

(The function array has an arbitrary number of arguments.) Another way is to use the
function make_array. The latter takes two arguments, a function, say f, and a natural
number, say n, and gives the effect of

array(f(0), f(1),, f(n-1))

One reason we might prefer such an array to a function itself is to avoid re-evaluating the
function at the same argument multiple times. Once the function values are "cached" in
the array, we can access them arbitrarily many times without recomputing.

Array access is preferred over list access for reasons of efficiency. For arrays, we can get
to any element in constant time. For lists, the computer has to "count up" to the
appropriate element. This takes time proportional to the index argument value. For this
reason, we emphasize the following:

Sequencing through a list L by repeated indexing L(i), L(i+1), L(i+2),
... is to be avoided, for reasons of efficiency.

We already know better ways to do this (using the list decomposition operators).

Exercises

1. ••• Construct a function that composes two functions represented as association lists.
For example, the following shows the association list form of a composition:

 [[0, 0], [1, 3], [2, 2], [3, 3]]
o [[0, 3], [1, 2], [2, 1], [3, 0]]
==> [[0, 3], [1, 2], [2, 3], [3, 0]]

(Hint: Use map.)

2. ••• Construct a function that composes two functions represented as lists-as-functions,
for example:

[0, 3, 2, 3] o [3, 2, 1, 0] ==> [3, 2, 3, 0]

(Hint: Use map.)

3.16 Solving Complex Problems using Functions

Most computational problems can be expressed in the form of implementing some kind
of function, whether or not functional programming is used as the implementation
method. In this section, we indicate how functions can provide a way of thinking about
decomposing a problem, to arrive at an eventual solution.

High-Level Functional Programming 87

As we already observed, functions have the attractive property closure under
composition: composing two functions gives a function. Inductively, composing any
number of functions will give a function. In solving problems, we want to reverse the
composition process:

Given a specification of a function to be implemented, find simpler
functions that can be composed to equal the goal function.

By continuing this process of decomposing functions into compositions of simpler ones,
we may arrive at some functions that we can use that are already implemented. There
may be some we still have to implement, either by further decomposition or by low-level
methods, as described in the next chapter.

A Very Simple Example

Implement a function that, with a list of words as input, produces a list that is sorted in
alphabetical order and from which all duplicates have been removed. Our goal function
can be decomposed into uses of two functions: sort and remove_duplicates:

goal(L) = remove_duplicates(sort(L));

If we were working in rex, then those two functions are built-in, and we'd be done.
Alternatively, we could set out to implement those functions using low-level methods.

An Example Using Directed Graphs

Consider the problem of determining whether a graph is acyclic (has no cycles). Assume
that the graph is given as a list of pairs of nodes.

Examples of an acyclic vs. a cyclic graph is shown below:

1

3

6

4

5

2

1

3

6

4

5

2

Figure 32: Acyclic vs. cyclic directed graphs

88 High-Level Functional Programming

We'd like to devise a function by composing functions that have been discussed thus far.
This function, call it is_acyclic, will take a list of pairs of nodes as an argument and
return a 1 if the graph is acyclic, or a 0 otherwise.

Here's the idea we'll use in devising the function:

If a graph is acyclic, then it must have at least one leaf.

A leaf is defined to be a node with no targets (also sometimes called a “sink”). So if the
graph has no leaf, we immediately know it is not acyclic. However, a graph can have a
leaf and still be cyclic. For example, in the rightmost (cyclic) graph above, node 3 is a
leaf. The second idea we'll use is:

Any leaf and attached arcs can be removed without affecting whether the
graph is acyclic or not.

Removing a leaf may produce new leaves in the resulting graph. For example, in the
leftmost (acyclic) graph above, node 3 is a leaf. When it is removed, node 6 becomes a
leaf.

The overall idea is this:

Starting with the given graph, repeat the following process as much as
possible:

Remove any leaf and its connected arcs.

There are two ways in which this process can terminate:

1. All nodes have been eliminated, or

2. There are still nodes, but no more leaves.

In case 1, our conclusion is that the original graph was acyclic. In case 2, it was not. In
fact, in case 2 we know that a cycle in the remaining graph exists and it is also a cycle of
the original graph.

We now concentrate on presenting these ideas using functions. As a running example,
we'll use the graph below, the representation of which is the following list:

[[1, 2], [2, 3], [2, 4], [4, 5], [6, 3], [4, 6], [5, 6]]

High-Level Functional Programming 89

1

3

6

4

5

2

Figure 33: An acyclic graph for discussion

First we need a function that can determine whether there is a leaf. By definition, a leaf is
a node with no arcs leaving it. A good place to start would seem to be devising a function
that can determine whether a given node of a graph is a leaf, then iterate that function
over the entire set of nodes. The following function is proposed:

is_leaf(Node, Graph) =

 no((Pair) => first(Pair) == Node, Graph);

The function no applies its first argument, a predicate, to a list. If there is an element in
the list satisfying the predicate, then there is a leaf. In this case, the predicate is given by
the anonymous function

(Pair) => first(Pair) == Node

that asks the question: is Node the first element of Pair? The function no asks this
question for each element of the list, stopping with 1 when a leaf is found, or returning 0
if no leaf is found.

On our example graph, suppose we try this function with arguments 3 and 4 in turn:

rex > graph = [[1, 2], [2, 3], [2, 4], [4, 5],
 [6, 3], [4, 6], [5, 6]];

1

rex > is_leaf(3, graph);
1

rex > is_leaf(4, graph);
0

Now let's use the is_leaf function to return a leaf in the graph, if there is one. Define
find_leaf as follows:

90 High-Level Functional Programming

find_leaf(Graph) =

 find((Node) => is_leaf(Node, Graph), nodes(Graph));

Here we are assuming that nodes(Graph) gives a list of all nodes in the graph. We're
going to leave the implementation of this function as an exercise. The result of
find_leaf will be a list beginning with the first leaf found. Only the first element of this
list is really wanted, so we will use first to get that element.

Let's try find_leaf on the example graph:

rex > find_leaf(graph);
[3, 4, 5, 6]

indicating that 3 is a leaf, since it is the first element of a non-empty list. We can thus
incorporate function find_leaf into one that tests whether there is a leaf:

no_leaf(Graph) = find_leaf(Graph) == [];

To remove a known leaf from a graph represented as a list of pairs, we must drop all pairs
with the leaf as second element (there are no pairs with the leaf as first element, by
definition of "leaf"). Here we use the function drop to do the work:

remove_leaf(Leaf, Graph) =

 drop((Pair) => second(Pair) == Leaf, Graph);

Similar to uses of no and find, the first argument of drop is a predicate. The resulting list
is like the original list Graph, but with all pairs satisfying the predicate removed.

To test remove_leaf in action:

rex > remove_leaf(3, graph);
[[1, 2], [2, 4], [4, 5], [4, 6], [5, 6]]

Now we work this into a function that finds a leaf and removes it. We'll use the same
name, but give the new function just one argument. By the way, here's where we apply
first to the result of find:

remove_leaf(Graph) =

 remove_leaf(first(find_leaf(Graph)), Graph);

This function in action is exemplified by:

rex > remove_leaf(graph);
[[1, 2], [2, 4], [4, 5], [4, 6], [5, 6]]

Now we have one issue remaining: the iteration of leaf removal until we get to a stage in
which either the graph is empty or no leaf exists. The following scenario indicates what

High-Level Functional Programming 91

we'd like to have happen: We create new graphs as long as no_leaf is false, each time
applying remove_leaf to get the next graph in the sequence. The reader is encouraged to
trace the steps on a directed graph diagram.

rex > graph1;
[[1, 2], [2, 3], [2, 4], [4, 5], [6, 3], [4, 6], [5, 6]]

rex > no_leaf(graph1);
0

rex > graph2 = remove_leaf(graph1);
1

rex > graph2;
[[1, 2], [2, 4], [4, 5], [4, 6], [5, 6]]

rex > no_leaf(graph2);
0

rex > graph3 = remove_leaf(graph2);
1

rex > graph3;
[[1, 2], [2, 4], [4, 5]]

rex > no_leaf(graph3);
0

rex > graph4 = remove_leaf(graph3);
1

rex > graph4;
[[1, 2], [2, 4]]

rex > no_leaf(graph4);
0

rex > graph5 = remove_leaf(graph4);
1

rex > graph5;
[[1, 2]]

rex > no_leaf(graph5);
0

rex > graph6 = remove_leaf(graph5);
1

rex > no_leaf(graph6);
1

rex > graph6;
[]

The fact that the final graph is [] indicates that the original graph was acyclic.

92 High-Level Functional Programming

Of course it is not sufficient to apply the transformations manually as we have done; we
need to automate this iterative process using a function. Let's postulate a function to do
the iteration, since we've not introduced one up until now:

iterate(Item, Action, Test)

will behave as follows. If Test(Item) is 1, then iteration stops and Item is returned.
Otherwise, iteration continues with the result being

iterate(Action(Item), Action, Test).

In other words, Action is applied to Item, and iteration continues. To accomplish our
overall acyclic test then, we would use:

is_acyclic(Graph) =

 iterate(Graph, remove_leaf, no_leaf) == [];

which reads: "iterate the function remove_leaf, starting with Graph, until Graph is either
empty or has no leaf, applying Action at each step to get a new Graph;. If the result is
empty, then Graph is acyclic, otherwise it is not." In other words, the functional
description succinctly captures our algorithm.

To demonstrate it on two similar test cases:

rex > is_acyclic([[1, 2], [2, 3], [2, 4], [4, 5],
 [6, 3], [4, 6], [5, 6]]);
1

rex > is_acyclic([[1, 2], [2, 3], [2, 4], [4, 5],
 [6, 3], [6, 4], [5, 6]]);
0

A Game-Playing Example

In this example, we devise a function that plays a version of the game of nim: There are
two players and a list of positive integers. Each integer can be thought of as representing
a pile of tokens. A player’s turn consists of selecting one of the piles and removing some
of the tokens from the pile. This results in a new list. If the player removes all of the
tokens, then that pile is no longer in the list. On each turn, only one pile changes or is
removed. Two players alternate turns and the one who takes the last pile wins.

Example: The current set of piles is [2, 3, 4, 1, 5]. The first player removes 1 from the
pile of 5, leaving [2, 3, 4, 1, 4]. The second player removes all of the pile of 4, leaving
[2, 3, 1, 4]. The first player does the same, leaving [2, 3, 1]. The second player takes 1
from the pile of 3, leaving [2, 2, 1]. The first player takes the pile of 1, leaving [2, 2]. The
second player takes one from the first pile, leaving [1, 2]. The first player takes one from

High-Level Functional Programming 93

the second pile, leaving [1, 1]. The second player takes one of the piles, leaving [1]. The
first player takes the remaining pile and wins.

There is a strategy for playing this form of nim. It is expressed using the concept of nim
sum, which we will represent by ⊕ . The nim sum of two numbers is formed by adding
their binary representations column-wise without carrying. For example, 3 ⊕ 5 = 6, since

3 = 0 1 1
5 = 1 0 1
6 = 1 1 0

The nim sum of more than two numbers is just the nim sum of the numbers taken
pairwise.

The strategy to win this form of nim is: Give your opponent a list with a nim-sum of 0.
This is possible when you are given a list with a non-zero nim sum, and only then. Since
a random list is more likely to have a non-zero nim sum than a zero one, you have a good
chance of winning, especially if you start first and know this strategy.

To see why it is possible to convert a non-zero nim sum list to a zero nim sum list by
removing tokens from one pile only, consider how that sum got the way it is. It has a
high-order 1 in its binary representation. The only way it could get this 1 is that there is a
number in the list with a 1 in that position. (There could be multiple such numbers, but
we know there will be an odd number of them.) Given s as the nim sum of the list, we
can find a number n with a 1 in that high-order position. If we consider n ⊕ s, that high-
order 1 is added to the 1 in s, to give a number with a 0 where there was a 1. Thus this
number is less than n . Therefore, we can take away a number of tokens, which reduces n
to n ⊕ s. For example, if n were 5 and s were 6, then we want to leave 5 ⊕ 6 = 3. So
what really counts is what we leave, and what we take is determined by that.

To see why the strategy works, note that if a player is given a non-empty list with a nim
sum of 0, the player cannot both remove some tokens and leave the sum at 0. To see this,
suppose that the player changes a pile with n tokens to one with m tokens, m < n. The nim
sum of the original list is n ⊕ r, where r stands for the nim sum of the remainder of the
piles. The new nim sum is m ⊕ r. Consider the sum n ⊕ m ⊕ r. This sum is equal to m ⊕ n
⊕ r, which is equal to m, since n ⊕ r is 0. So the new nim sum can only be 0 if he leaves
0 in some pile, i.e. he takes the entire pile. But taking a whole pile of size n is equivalent
to nim-adding n to the nim sum, since r is the new sum and using the associative property
for ⊕:

n ⊕ (n ⊕ r) == (n ⊕ n) ⊕ r
 == r

since
(n ⊕ r) is the original nim sum, assumed to be 0.
(n ⊕ n) == 0 is a property of ⊕
(0 ⊕ r) == r is a property of ⊕

94 High-Level Functional Programming

The only way nim-adding n to 0 can produce 0 is if n itself is 0, which is contradictory.

By always handing over a list with a sum of zero, a player is guaranteed to get back a list
with a non-zero sum, up until the point where there is one pile left, which he takes and
wins the game.

Now let's see how to make a good nim player as a function play_nim. Assume that the
argument to our function is a non-empty list with a nim sum of non-zero. Then the player
would decompose the problem into:

Find the nim sum of the list, call it s.

Find a pile to which s can be nim-added to produce a number less than s. Make a
new list reflecting that change.

 We can show this as:

play_nim(L) = make_new_list(nim_sum(L), L);

We can construct nim_sum by using reduce and a function that makes the nim sum of
two numbers. Let's call this function xor. Then we have

nim_sum(L) = reduce(xor, 0, L);

The value of make_new_list(s, L) must make a list by replacing the first element n of
L such that s ⊕ n < n with the value s ⊕ n. We don't have a function like this in our
repertoire just yet, so let's postulate one:

change_first(P, F, L)

creates a new list from L by finding the first element satisfying predicate P and applying
the function F to it, leaving other elements unchanged. We will have to appeal to the next
chapter to see how to go further with change_first. We also need to drop the element in
the case that it is 0. This can be done by our function drop:

make_new_list(s, L) =
 drop((n) => n == 0,
 change_first((n) => (xor(s, n) < n), (n) => xor(s, n), L));

So we have reduced the original problem to that of providing xor and change_first.

To complete our nim player, we have to provide an action for the case it is given a list
with a non-zero sum. How to provide such alternatives will be discussed in the next
chapter.

High-Level Functional Programming 95

Exercises

1. •• Develop an implementation of the function nodes that returns the list of nodes of a
graph represented as a list of pairs.

2. ••• Develop an implementation of the function xor used in the nim example.

3.17 Conclusion

This chapter has shown how information structures can be transformed using functions.
Such techniques provide a powerful collection of viewpoints, even if we do not use the
tools exclusively. The language rex was used to illustrate the concepts, however the ideas
carry forward into many varieties of language, functional and otherwise. Later on, for
example, we show how to express them in Java.

3.18 Chapter Review

Define the following concepts or terms:

acyclic graph test
anonymous function
assoc function
association list
composition of functions
definition by enumeration
definition by equation
higher-order function
lists as functions
leaf of a graph
map function
mappend function
nim sum
pipeline principle
predicate
reduce function
satisfy

