
10. Predicate Logic

10.1 Introduction

Predicate logic builds heavily upon the ideas of proposition logic to provide a more
powerful system for expression and reasoning. As we have already mentioned, a
predicate is just a function with a range of two values, say false and true. We already
use predicates routinely in programming, e.g. in conditional statements of the form

if(p(...args ...))

Here we are using the two possibilities for the return value of p, (true or false). We
also use the propositional operators to combine predicates, such as in:

if(p(....) && (!q(....) || r(....)))

Predicate logic deals with the combination of predicates using the propositional
operators we have already studied. It also adds one more interesting element, the
"quantifiers".

The meaning of predicate logic expressions is suggested by the following:

Expression + Interpretation + Assignment = Truth Value

Now we explain this equation.

An interpretation for a predicate logic expression consists of:

a domain for each variable in the expression

a predicate for each predicate symbol in the expression

a function for each function symbol in the expression

Note that the propositional operators are not counted as function symbols in the case of
predicate logic, even though they represent functions. The reason for this is that we do
not wish to subject them to interpretations other than the usual propositional
interpretation. Also, we have already said that predicates are a type of function. However,
we distinguish them in predicate logic so as to separate predicates, which have truth
values used by propositional operators, from functions that operate on arbitrary domains.
Furthermore, as with proposition logic, the stand-alone convention applies with
predicates: We do not usually explicitly indicate == 1 when a predicate expression is
true; rather we just write the predicate along with its arguments, standing alone.

380 Predicate Logic

An assignment for a predicate logic expression consists of:

a value for each variable in the expression

Given an assignment, a truth value is obtained for the entire expression in the natural
way.

Example

Consider the expression:

x < y || (y < z && z < x)

 ^ ^ ^ predicate symbols

Here || and && are propositional operators and < is a predicate symbol (in infix notation).
An assignment is a particular predicate, say the less_than predicate on natural numbers,
and values for x, y, and z, say 3, 1, and 2. With respect to this assignment then, the value
is that of

3 < 1 || (1 < 2 && 2 < 3)

which is

false || (true && true)

i.e.
true.

With respect to the same assignment for <, but 3, 2, 1 for x, y, z, the value would be that
of

3 < 2 || (2 < 1 && 1 < 3)

which would be false. As long as we have assigned meanings to all variables and
predicates in the expression, we can derive a false or true value. Now we give an
example where function symbols, as well as predicate symbols, are present.

((u + v) < y) || ((y < (v + w)) && v < x)

 ^ ^ function symbols

would be an example of an expression with both function and predicate symbols. If we
assign + and < their usual meanings and u, v, w, x, y the values 1, 2, 3, 4, 5 respectively,
this would evaluate to the value of

((1 + 2) < 4) || ((4 < (2 + 3)) && 2 < 4)

which is, of course, true.

Predicate Logic 381

Validity

It is common to be concerned with a fixed interpretation (of domains, predicates, and
functions) and allow the assignment to vary over individuals in a domain. If a formula
evaluates to true for all assignments, it is called valid with respect to the interpretation.
If a formula is valid with respect to every interpretation, it is called valid. A special case
of validity is where sub-expressions are substituted for proposition symbols in a
tautology. These are also called tautologies. However, not every valid formula is a
tautology, as is easily seen when we introduce quantifiers later on.

10.2 A Database Application

An important use of predicate logic is found in computer databases and the more general
notion of "knowledge base", defined to be a database plus various computation rules. In
this application, it is common to use predicate expressions containing variables as above
as "queries". The predicates themselves represent the underlying stored data, computable
predicates, or combinations thereof. A query asks the system to find all individuals
corresponding to the variables in the expression such that the expression is satisfied
(evaluates to 1). Next we demonstrate the idea of querying a database using the Prolog
language as an example. Prolog is not the most widely-used database query language; a
language known as SQL (Structured Query Logic) probably has that distinction. But
Prolog is one of the more natural to use in that it is an integrated query language and
programming language.

Prolog Database Example

There are many ways to represent the predicates in a database, such as by structured files
representing tables, spreadsheet subsections, etc. In the language Prolog, one of the ways
to represent a predicate is just by enumerating all combinations of values for which the
predicate is true. Let us define the predicates mother and father in this fashion. These
predicates provide a way of modeling the family "tree" on the right.

382 Predicate Logic

mother(alice, tom).
mother(alice, carol).
mother(carol, george).
mother(carol, heather).
mother(susan, hank).

father(john, tom).
father(john, carol).
father(fred, george).
father(fred, heather).
father(george, hank).

alice

caroltom

georgesusan

hank

john

fred

heather

Figure 163: A family "tree" modeled as two predicates, mother and father.

It is possible for a query to contain no variables, in which case we would expect an
answer of 1 or 0. For example,

mother(susan, hank) ⇒ true

mother(susan, tom) ⇒ false

More interestingly, when we put variables in the queries, we expect to get values for
those variables that satisfy the predicate:

mother(alice, X) ⇒ X = tom; X = carol (two alternatives for X)

father(tom, X) ⇒ false (no such X exists)

mother(X, Y) ⇒ (several alternative combinations for X, Y)
X = alice, Y = tom;
X = alice, Y = carol;
X = carol, Y = george;
X = carol, Y = heather;
X = susan, Y = hank

Note that the X and Y values must be in correspondence. It would not do to simply
provide the set of X and the set of Y separately.

Predicate Logic 383

Defining grandmother using Prolog

The Prolog language allows us to present queries and have them answered automatically
in a style similar to the above. Moreover, Prolog allows us to define new predicates using
logic rather than enumeration.

Such a predicate is defined by the following logical expression:

grandmother(X, Y) :- mother(X, Z), parent(Z, Y).

Here :- is read as "if" and the comma separating mother and parent is read as "and". This
says, in effect, "X is the grandmother of Y if X is the mother of (some) Z and Z is the
parent of Y". We have yet to define parent, but let's do this now:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

Here we have two separate logical assertions, one saying that "X is the parent of Y if X is
the mother of Y", and the other saying a similar thing for father. These assertions are not
contradictory, for the connective :- is "if", not "if and only if". However, the collection of
all assertions with a given predicate symbol on the lhs exhausts the possibilities for that
predicate. Thus, the two rules above together could be taken as equivalent to:

parent(X, Y) iff (mother(X, Y) or father(X, Y))

Given these definitions in addition to the database, we now have a "knowledge base"
since we have rules as well as enumerations. We can query the defined predicates in the
same way we queried the enumerated ones. For example:

grandmother(alice, Y) ⇒ Y = george; Y = heather

grandmother(X, Y) ⇒ X = alice, Y = george;
X = alice, Y = heather
X = carol, Y = hank

grandmother(susan, Y) ⇒ false

Quantifiers

Quantifiers are used in predicate logic to represent statements that range over sets or
"domains" of individuals. They can be thought of as providing a very concise notation for
what might otherwise be large conjunctive (∧) expressions and disjunctive (∨)
expressions.

384 Predicate Logic

Universal Quantifier ∀ ("for all", "for every")
(∀ x) P(x) means for every x in the domain of discourse P(x) is true.

Existential Quantifier ∃ ("for some", "there exists")
(∃ x) P(x) means for some x in the domain of discourse P(x) is true.

If the domain can be enumerated {d0, d1, d2, ...} (and this isn't always possible) then the
following are suggestive

(∀ x) P(x) ≡ (P(d0) ∧ P(d1) ∧ P(d2) ∧ ...)

(∃ x) P(x) ≡ (P(d0) ∨ P(d1) ∨ P(d2) ∨ ...)

This allows us to reason about formulas such as the of DeMorgan’s laws for
Quantifiers:

¬ (∀ x) P(x) ≡ (∃ x) ¬ P(x)
¬ (∃ x) P(x) ≡ (∀ x) ¬ P(x)

The definition of validity with respect to an interpretation, and thus general validity, is
easily extended to formulas with quantifiers. For example, in the natural number
interpretation, where the domain is {0, 1, 2, …} and > has its usual meaning, we have the
following:

Formula Meaning Validity
(∃ x) x > 0 There is an element larger than 0. valid
(∀ x) x > x Every element is larger than itself. invalid
(∀ x)(∃ y) x > y Every element is larger than some element. invalid
(∀ x)(∃ y) y > x Every element has a larger element. valid
(∃ x)(∀ y) (y != x) → x > y There is an element larger than every other. invalid

Exercises

With respect to the interpretation in which:
The domain is the natural numbers
== is equality
> is greater_than
- is proper subtraction

which of the following are valid:

1 •• x < y → (x - z) < (y - z)

Predicate Logic 385

2 •• x < y ∨ y < x

3 •• (x < y ∨ x ==y) ∧ (y < x ∨ x ==y) → (x ==y)

Assuming that distinct are predicates such that distinct(X, Y) is true when the
arguments are different, express rules with respect to the preceding Prolog database that
define:

4 •• sibling(X, Y) means X and Y are siblings (different people having the same
parents)

5 •• cousin(X, Y) means that X and Y are children of siblings

6 ••• uncle(X, Y) means that X is the sibling of a Z such that Z is the parent of Y, or
that X is the spouse of such a Z.

7 ••• brother_in_law(X, Y) means that X is the brother of the spouse of Y, or that X is
the husband of a sibling of Y, or that X is the husband of a sibling of the spouse of Y.

Which of the following are valid for the natural numbers interpretation?

8 • (∃ x) (x != x)

9 • (∀ y)(∃ x) (x != y)

10 • (∀ y)(∃ x) (x = y)

11 •• (∀ y)(∀ x) (x = y) ∨ (x > y) ∨ (x < y)

12 •• (∀ y) [(y = 0) ∨ (∃ x) (x < y)]

13 •• (∀ y) [(y = 0) ∨ (∃ x) (x > y)]

Bounded Quantifiers

Two variants on quantifiers are often used because they conform to conversational usage.
It is common to find statements such as

"For every x such that, P(x)."

For example,

"For every even x > 2, not_prime(x)."

386 Predicate Logic

Here the represents a condition on x. The added condition is an example of a
"bounded quantifier", for it restricts the x values being considered to those for which
is true. However, we can put into the form of a predicate and reduce the bounded
quantifier case to an ordinary quantifier. Let Q(x) be the condition "packaged" as a
predicate. Then

"For every x such that Q(x), P(x)."

is equivalent to

(∀ x) [Q(x) → P(x)]

Similarly, existential quantifiers can also be bounded.

"For some x such that Q(x), P(x)."

is equivalent to

(∃ x) [Q(x) ∧ P(x)]

Note that the bounded existential quantifier translates to an "and", whereas the bounded
universal quantifier translates to an "implies".

Quantifiers and Prolog

Prolog does not allow us to deal with quantifiers in a fully general way, and quantifiers
are never explicit in prolog. Variables that appear on the lefthand side of a Prolog rule
(i.e. to the left of :-) are implicitly quantified with ∀ . Variables that appear only on the
righthand side of a rule are quantified as around the righthand side itself. For example,
above we gave the definition of grandmother:

grandmother(X, Y) :- mother(X, Z), parent(Z, Y).

With explicit quantification, this would appear as:

(∀ x)(∀ y) [grandmother(X, Y) if (∃ Z) mother(X, Z) and parent(Z, Y)]

The reason that this interpretation is used is that it is fairly natural to conceptualize and
that it corresponds to the procedural interpretation of Prolog rules.

Logic vs. Procedures

Although Prolog mimics a subset of predicate logic, the real semantics of Prolog have a
procedural basis. That is, it is possible to interpret the logical assertions in Prolog as if

Predicate Logic 387

they were a kind of generalized procedure call. This duality means that Prolog can be
used as both a procedural language (based on actions) and as a declarative language
(based on declarations or assertions). Here we briefly state how this works, and in the
process will introduce an important notion, that of backtracking.

To a first approximation, a Prolog rule is like an ordinary procedure: The lefthand side is
like the header of a procedure and the righthand side like the body. Consider, then, the
rule

grandmother(X, Y) :- mother(X, Z), parent(Z, Y).

Suppose we make the "call" (query)

grandmother(alice, Y)

Satisfying this predicate becomes the initial "goal". In this case, the call matches the lhs
of the rule. The body is detached and becomes

mother(alice, Z), parent(Z, Y)

This goal is read: "Find a Z such that mother(alice, Z). If successful, using that value
of Z, find a Y such that parent(Z, Y). If that is successful, Y is the result of the original
query."

We can indeed find a Z such that mother(alice, Z). The first possibility in the
definition of mother is that Z = tom. So our new goal becomes parent(tom, Y). We
then aim to solve this goal. There are two rules making up the "procedure" for parent:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

Each rule is tried in turn. The first rule gives a body of mother(tom, Y). This goal will
fail, since mother is an enumerated predicate and there is no Y of this form. The second
rule gives a body of father(tom, Y). This goal also fails for the same reason. There
being no other rules for parent, the goal parent(tom, Y) fails, and that causes the body

mother(alice, Z), parent(Z, Y)

to fail for the case Z = tom. Fortunately there are other possibilities for Z. The next rule
for mother indicates that Z = carol also satisfies mother(alice, Z). So then we set off
to solve

parent(carol, Y).

Again, there are two rules for parent. The first rule gives us a new goal of

mother(carol, Y)

388 Predicate Logic

This time, however, there is a Y that works, namely Y = george. Now the original goal
has been solved and the solution Y = george is returned.

10.3 Backtracking Principle

The trying of alternative rules when one rule fails is called backtracking. Backtracking
also works to find multiple solutions if we desire. We need only pretend that the solution
previously found was not a solution and backtracking will pick up where it left off in the
search process. Had we continued in this way, Y = heather would also have produced as a
solution. The arrows below suggest the path of backtracking in the procedural
interpretation of Prolog. One can note that the backtracking paradigm is strongly related
to recursive descent and depth-first search, which we will have further occasion to
discuss.

alice

caroltom

georgesusan

hank

john

f red

heather

Figure 164: Backtracking in Prolog procedures

Recursive Logic

We close this section by illustrating a further powerful aspect of Prolog: rules can be
recursive. This means that we can combine the notion of backtracking with recursion to
achieve a resulting language that is strictly more expressive than a recursive functional
language. At the same time, recursive rules retain a natural reading in the same way that
recursive functions do.

Earlier we gave a rule for grandmother. Suppose we want to give a rule for ancestor,
where we agree to count a parent as an ancestor. A primitive attempt of what we want to
accomplish is illustrated by the following set of clauses:

Predicate Logic 389

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z1), parent(Z1, Y).
ancestor(X, Y) :- parent(X, Z1), parent(Z1, Z2), parent(Z2, Y).

...

The only problem is that this set of rules is infinite. If we are going to make a program,
we had better stick to a finite set. This can be accomplished if we can use ancestor
recursively:

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

This pair of rules provides two ways for X to be an ancestor of Y. But since one of them is
recursive, an arbitrary chain of parents can be represented. In the preceding knowledge,
all of the following are true:

parent(alice, carol), parent(carol, george), parent(george, hank)

It follows logically that

ancestor(george, hank)
ancestor(carol, hank)
ancestor(alice, hank)

so that a query of the form ancestor(alice, Y) would have Y = hank as one of its
answers.

Using Backtracking to Solve Problems

In chapter Compute by the Rules, we gave an example of a program that "solved" a
puzzle, the Towers of Hanoi. Actually, it might be more correct to say that the
programmer solved the puzzle, since the program was totally deterministic, simply
playing out a pre-planned solution strategy. We can use backtracking for problems that
are not so simple to solve, and relieve the programmer of some of the solution effort.
Although it is perhaps still correct to say that the programmer is providing a strategy, it is
not as clear that the strategy will work, or how many steps will be required.

Consider the water jugs puzzle presented earlier. Let us use Prolog to give some logical
rules for the legal moves in the puzzle, then embed those rules into a solution mechanism
that relies on backtracking. For simplicity, we will adhere to the version of the puzzle
with jug capacities 8, 5, and 3 liters. The eight liter jug begins full, the others empty. The
objective is to end up with one of the jugs containing 4 liters.

When we pour from one jug to another, accuracy is ensured only if we pour all of the
liquid in one jug into the other that will fit. This means that there two limitations on the
amount of liquid transferred:

390 Predicate Logic

(a) The amount of liquid in the source jug

(b) The amount of space in the destination jug

Thus the amount of liquid transferred is the minimum of those two quantities.

Let us use terms of the form

jugs(N8, N5, N3)

to represent the state of the system, with Ni liters of liquid in the jug with capacity i. We
will define a predicate => representing the possible state transitions. The first rule relates
to pouring from the 8 liter jug to the 5 liter jug. The rule can be stated thus:

jugs(N8, N5, N3) => jugs(M8, M5, N3) :-
 N8 > 0,
 S5 is 5 - N5,
 min(N8, S5, T),
 T > 0,
 M8 is N8 - T,
 M5 is N5 + T.

The conjunct N8 > 0 says that the rule only applies if something is in the 8 liter jug. S5
is computed as the space available in the 5 liter jug. Then T is computed as the amount to
be transferred. However, T > 0 prevents the transfer of nothing from being considered a
move. Finally, M8 is the new amount in the 8 liter jug and M5 is the new amount in the 5
liter jug. The 3 liter jug is unchanged, so N3 is used in both the "before" and "after"
states. The predicate min yields as the third argument the minimum of the first two
arguments. Its definition could be written:

min(A, B, Min) :-
 A =< B,
 Min is A.
min(A, B, Min) :-
 A > B,
 Min is B.

In a similar fashion, we could go on to define rules for the other possible moves. We will
give one more, for pouring from the 3 liter to the 5 liter jug, then leave the remaining four
to the reader.

jugs(N8, N5, N3) => jugs(N8, M5, M3) :-
 N3 > 0,
 S5 is 5 - N5,
 min(N3, S5, T),
 T > 0,
 M3 is N3 - T,
 M5 is N5 + T.

Predicate Logic 391

The rules we have stated are simply the constraints on pouring. They do not solve any
problem. In order to do this, we need to express the following recursive rule:

A solution from a final state consists of the empty sequence of moves.

A solution from a non-final state consists of a move from the state to another
state, and a solution from that state.

In order to avoid re-trying the same state more than once, we need a way to keep track of
the fact that we have tried a state before. We will take a short-cut here and use Prolog's
device of dynamically asserting new logical facts. In effect, we are building the definition
of a predicate on the fly. Facts of the form marked(State) will indicate that State has
already been tried. The conjunct \+marked(State1) says that we have not tried the state
before. So as soon as we determine that we have not tried a state, we indicate that we are
now trying it. Then we use predicate move as constructed above, to tell us the new state
and recursively call solve on it. If successful, we form the list of moves by combining the
move used in this rule with the list of subsequent moves.

solve(State1, []) :-
 final(State1). % final state reached, success

solve(State1, Moves) :-
 \+marked(State1), % continue if state not tried
 assert(marked(State1)), % mark state as tried
 (State1 => State2), % use transition relation
 solve(State2, More), % recurse
 Moves = [move(State1, State2) | More]. % record sequence

The following rules tell what states are considered final and initial:

initial(jugs(8, 0, 0)).

final(jugs(4, _N5, _N3)).

final(jugs(_N8, 4, _N3)).

When we call, in Prolog, the goal

 initial(State),
 solve(State, Moves).

two distinct move sequences are revealed, one shorter than the other, as shown be the
following solution tree.

392 Predicate Logic

800

350

053

503

530

233

251

701

710

413

323

620

602

152

143

Figure 165: A tree of solutions for a water jug puzzle

We'll discuss further aspects of solving problems in this way in the chapter Computing
with Graphs. Earlier, we stated the recursion manifesto, which suggests using recursion
to minimize work in solving problems. The actual problem solving code in this example,
exclusive of the rules for defining legal transitions, is quite minimal. This is due both to
recursion and backtracking. So the Prolog programmers' manifesto takes things a step
further:

Let recursion and backtracking do the work for you.

Prolog programmers' manifesto

Backtracking in "Ordinary" Languages

This is somewhat of a digression from logic, but what if we don't have Prolog available to
implement backtracking? We can still program backtracking, but it will require some
"engineering" of appropriate control. The basic feature provided by backtracking is to be

Predicate Logic 393

able to try alternatives and if we reach failure, have the alternatives available so that we
may try others. This can be accomplished with just recursion and an extra data structure
that keeps track of the remaining untried alternatives in some form. In many cases, we
don't have to keep a list of the alternatives explicitly; if the alternatives are sufficiently
well-structured, it may suffice to be able to generate the next alternative from the current
one.

A case in point is the classical N-queens problem. The problem is to place N queens on
an N-by-N chessboard so that no two queens attack one another. Here two queens attack
each other if they are in the same row, same column, or on a common diagonal. Below
we show a solution for N = 8, which was the output from the program we are about to
present.

Q
Q

Q
Q

Q
Q

Q
Q

Figure 166: A solution to the 8-queens problem

To solve this problem using backtracking, we take the following approach: Clearly the
queens must all be in different rows. We call these the "first" queen, "second" queen, etc.
according to the row dominated by that queen. So it suffices to identify the columns for
the queens in each row. Thus we can proceed as follows:

Place the first queen in the first unoccupied row.
Place the second queen in the next unoccupied row so that it doesn't attack the first

queen.
Place the third queen in the next unoccupied row so that it doesn't attack the first two

queens.

Continuing in this way, one of two things will eventually happen: We will reach a
solution, or we will be unable to place a queen according to the non-attacking constraint.
In the latter case, we backup to the most recent discretionary placement and try the next
alternative column, and proceed forward from there. The current problem is well
structured: the next alternative column is just the current alternative + 1. So we can
accomplish pretty much all we need by the mechanism of recursion.

394 Predicate Logic

Here is the program:

import java.io.*;
import Poly.Tokenizer;

/* N Queens puzzle solver: The program accepts an integer N and produces a
 * solution to the N Queens problem for that N.
 */

class Queens
 {
 int N; // number of rows and columns

 int board[]; // board[i] == j means row i has a queen on column j

 static int EMPTY = -1; // value used to indicate an empty row

 Queens(int N) // construct puzzle
 {
 this.N = N;
 board = new int[N]; // create board
 for(int i = 0; i < N; i++)
 board[i] = EMPTY; // initialize board
 }

 public static void main(String arg[]) // test program
 {
 Poly.Tokenizer in = new Poly.Tokenizer(System.in);
 int token_type;
 while(prompt() && (token_type = in.nextToken()) != Poly.Tokenizer.TT_EOF)
 {
 if(token_type != Poly.Tokenizer.TT_LONG || in.lval <= 0)
 {
 System.out.println("Input must be a positive integer");
 continue;
 }

 Queens Puzzle = new Queens((int)in.lval);

 if(Puzzle.Solve()) // solve the puzzle
 {
 Puzzle.Show();
 }
 else
 {
 System.out.println("No solutions for this size problem");
 }
 }
 System.out.println();
 }

 static boolean prompt() // prompt for input
 {
 System.out.print("Enter number of queens: ");
 System.out.flush();
 return true;
 }

 boolean Solve() // try to solve the puzzle
 {

Predicate Logic 395

 return Solve(0);
 }

 //
 // Solve(row) tries to solve by placing a queen in row, given
 // successful placement in rows < row. If successful placement is not
 // possible, return false.
 //

 boolean Solve(int row)
 {
 if(row >= N)
 return true; // queens placed in all rows, success
 for(int col = 0; col < N; col++) // Try each column in turn
 {
 if(!Attack(row, col)) // Can we place in row, col?
 {
 board[row] = col; // Place queen in row, col.
 if(Solve(row+1)) // See if this works for following rows
 return true; // success
 else
 board[row] = EMPTY; // undo placement, didn't work
 }
 }
 return false; // no solution found for any column
 }

 // see if placing in row, col results in an attack given the board so far.

 boolean Attack(int row, int col)
 {
 for(int j = 0; j < row; j++)
 {
 if(board[j] == col || Math.abs(board[j]-col) == Math.abs(j-row))
 return true;
 }
 return false;
 }

 // show the board

 void Show()
 {
 int col;

 for(col = 0; col < N; col++)
 System.out.print(" _");
 System.out.println();

 for(int row = 0; row < N; row++)
 {
 for(col = 0; col < board[row]; col++)
 System.out.print("|_");
 System.out.print("|Q");
 for(col++; col < N; col++)
 System.out.print("|_");
 System.out.println("|");
 }
 System.out.println();
 }
 } // Queens

396 Predicate Logic

Functional Programming is a form of Logic Programming

Prolog includes other features beyond what we present here. For example, there are
predicates for evaluating arithmetic expressions and predicates for forming and
decomposing lists. The syntax used for lists in rex is that used in Prolog. We have said
before that functions are special cases of predicates. However, functional programming
does not use functions the way Prolog uses predicates; most functional languages cannot
"invert" (solve for) the arguments to a function given the result. In another sense, and this
might sound contradictory, functions are a special case of predicates: An n-ary function,
of the form Dn → R, can be viewed as an (n+1)-ary predicate. If f is the name of the
function and p is the name of the corresponding predicate, then

f(x1, x2,, xn) == y iff p(x1, x2,, xn, y)

In this sense, we can represent many functions as Prolog predicates. This is the technique
we use for transforming rex rules into Prolog rules. A rex rule:

f(x1, x2,, xn) => rhs.

effectively becomes a Prolog rule:

p(x1, x2,, xn, y) :-
... expression determining y from rhs and x1, x2,, xn, !.

The ! is a special symbol in Prolog known as "cut". Its purpose is to prevent
backtracking. Recall that in rex, once we commit to a rule, subsequent rules are not tried.
This is the function of cut.

Append in Prolog

In rex, the append function on lists was expressed as:

append([], Y) => Y;
append([A | X], Y) => [A | append(X, Y)];

In Prolog, the counterpart would be an append predicate:

append([], Y, Y) :- !.

append([A | X], Y, [A | Z]) :- append(X, Y, Z).

In Prolog, we would usually not include the cut (!), i.e. we would allow backtracking.
This permits append to solve for the lists being appended for a given result list. For
example, if we gave Prolog the goal append(X, Y, [1, 2, 3]), backtracking would produce
four solutions for X, Y:

Predicate Logic 397

X = [], Y = [1, 2, 3];
X = [1], Y = [2, 3];
X = [1, 2], Y = [3];
X = [1, 2, 3], Y = []

10.4 Using Logic to Specify and Reason about Program Properties

One of the important uses of predicate logic in computer science is specifying what
programs are supposed to do, and convincing oneself and others that they do it. These
problems can be approached with varying levels of formality. Even if one never intends
to use logic to prove a program, the techniques can be useful in thinking and reasoning
about programs. A second important reason for understanding the principles involved is
that easy-to-prove programs are usually also easy to understand and "maintain"† .
Thinking, during program construction, about what one has to do to prove that a program
meets its specification can help guide the structuring of a program.

Program Specification by Predicates

A standard means of specifying properties of a program is to provide two predicates over
variables that represent input and output of the program:

Input Predicate: States what is assumed to be true at the start of the program.

Output Predicate: States what is desired to be true when the program terminates.

For completeness, we might also add a third predicate:

Exceptions Predicate: State what happens if the input predicate is not satisfied
by the actual input.

For now, we will set aside exceptions and focus on input/output. Let us agree to name the
predicates In and Out.

Factorial Specification Example

int n, f; (This declares the types the variables used below.)

† The word "maintenance" is used in a funny way when applied to programs. Since programs are not

mechanical objects with frictional parts, etc., they do not break or wear out on their own accord.
However, they are sometimes unknowingly released with bugs in them and those bugs are hopefully
fixed retroactively. Also, programs tend not to be used as is for all time, but rather evolve into better or
more comprehensive programs. These ideas: debugging and evolution, are lumped into what is loosely
called program "maintenance".

398 Predicate Logic

In(n): n >= 0 (States that n >= 0 is assumed to be true at start.)

Out(n, f): f == n! (States that f == n! is desired at end.)

Programs purportedly satisfying the above specification:

/* Program 1: bottom-up factorial*/

f = 1;
k = 1;
while(k <= n)
 {
 f = f * k;
 k = k + 1;
 }

The program itself is almost independent of the specification, except for the variables
common to both. If we had encapsulated the program as a function, we could avoid even
this relationship.

/* Program 2: top-down factorial*/

f = 1;
k = n;
while(k > 1)
 {
 f = f * k;
 k = k - 1;
 }

/* Program 3: recursive factorial*/

f = fac(n);

where

long fac(long n)
{
if(n > 1)
 return n*fac(n-1);
else
 return 1;
}

Each of the above programs computes factorial in a slightly different way. While the
second and third are superficially similar, notice that the third is not tail recursive. Its
multiplications occur in a different order than in the second, so that in some ways it is
closer to the first program.

Predicate Logic 399

Proving Programs by Structural Induction

"Structural induction" is induction along the lines of an inductive data definition. It is
attractive for functional programs. Considering program 3 above, for example, a
structural induction proof would go as follows:

Basis: Prove that fac is correct for n == 1 and n == 0.

Induction: Assuming that fac is correct for argument value n-1, show that it is
correct for argument value n.

For program 3, this seems like belaboring the obvious: Obviously fac gives the right
answer (1) for arguments 0 and 1. It was designed that way. Also, if it works for n-1, then
it works for n, because the value for n is just n times the value for n-1.

The fact that functional programs essentially are definitions is one of their most attractive
aspects. Many structural induction proofs degenerate to observations.

In order to prove programs 1 and 2 by structural induction, it is perhaps easiest to recast
them to recursive programs using McCarthy's transformation. Let's do this for Program 2:

fac(n) = fac(n, 1);

fac(k, f) => k > 1 ? fac(k-1, f*k) : f;

Again, for n == 0 or n == 1, the answer is 1 by direct evaluation.

Now we apply structural induction to the 2-argument function. We have to be a little
more careful in structuring our claim this time. It is that:

(∀ f) fac(k, f) ⇒ f * k!.

We arrived at this claim by repeated substitution from the rule for fac:

fac(k, f) ⇒
fac(k-1, f*k) ⇒
fac(k-2, f*k*(k-1)) ⇒
fac(k-3, f*k*(k-1)*(k-2)) ⇒ ...

Why we need the quantification of for all values of f is explained below. When called
with k == 0 or k == 1 initially, the result f is given immediately. But k! == 1 in this
case, so f == f*k!.

Now suppose that k > 1, we have the inductive hypothesis

(∀ f) fac(k-1, f) ⇒ f * (k-1)!.

400 Predicate Logic

and we want to show

(∀ f) fac(k, f) ⇒ f * k!.

For any value of f, the program returns the result of calling fac(k-1, f*k). By the
inductive hypothesis, the result of this call is (f * k) *(k-1)!. But this is equal to f *
(k * (k-1)!), which is equal to f * k!, what we wanted to show.

The quantification (∀ f) was necessary so that we could substitute f*k for f in the
induction hypothesis. The proof would not be valid for a fixed f because the necessary
value of f is different in the inductive conclusion.

Now let’s look at an example not so closely related to traditional mathematical induction.
Suppose we have the function definition in rex:

shunt([], M) => M;

shunt([A | L], M) => shunt(L, [A | M]);

This definition is a 2-argument auxiliary for the reverse function:

reverse(L) = shunt(L, []);

We wish to show that shunt as intended, namely:

The result of shunt(L, M) is that of appending M to the reverse of L.

In symbols:

(∀ L) (∀ M) shunt(L, M) ⇒ reverse(L) ^ M

where ⇒ means evaluates to and ^ means append.

To show this, we structurally induct on one of the two arguments. The choice of which
argument is usually pretty important; with the wrong choice the proof simply might not
work. Often, the correct choice is the one in which the list dichotomy is used in the
definition of the function, in this case the first argument L. So, proceeding with structural
induction, we have

Basis L == []: (∀ M) shunt([], M) ⇒ reverse([]) ^ M)

The basis follows immediately from the first rule of the function definition;
shunt([], M) will immediately rewrite to M. and M == reverse([]) ^ M.

Induction step L == [A | N]: The inductive hypothesis is:

 (∀ M) shunt(N, M) ⇒ reverse(N) ^ M

Predicate Logic 401

and what is to be shown is:

(∀ M) shunt([A | N], M) ⇒ reverse([A | N]) ^ M

From the second definition rule, we see that the shunt([A | N], M) rewrites to

shunt(N, [A | M])

From our inductive hypothesis, we have

shunt(N, [A | M]) ⇒ reverse(N) ^ [A | M]

because of quantification over the argument M. Now make use of an equality

reverse(N) ^ [A | M] == reverse([A | N]) ^ M

which gives us what is to be shown

To be thorough, the equality used would itself need to be established. This can be done
by appealing to our inductive hypothesis: Notice that the rhs of the equality is equivalent
to shunt([A | N], []) ^ M, by the equation that defines reverse. According to the
second definition rule, this rewrites to shunt(N, [A]) ^ M. But by our inductive
hypothesis, this evaluates to (reverse(N) ^ [A]) ^ M, which is equivalent to lhs of the
equality using associativity of ^ and the equality [A] ^ M == [A | M]. If desired, both
of these properties of ^ could be established by secondary structural induction arguments
on the definition of ^.

Proving Programs by Transition Induction

Transition induction takes a somewhat different approach from structural induction.
Instead of an inductive argument on the data of a functional program, the induction
proceeds along the lines of how many transitions have been undertaken from the start of
the program to the end, and in fact, to points intermediate as well.

A common variation on the transition induction theme is the method of "loop invariants".
A loop invariant is a logical assertion about the state of the program at a key point in the
loop, which is supposed to be true whenever we get to that point. For a while loop or a
for loop, this point is just before the test, i.e. where the comment is in the following
program:

initialization

while(/* invariant */ test)

body

402 Predicate Logic

For example, in factorial program 2 repeated below with the invariant introduced in the
comment, the loop invariant can be shown to be

k > 0 && f == n! / k!

/* Program 2: top-down factorial*/

f = 1;
k = n;
while(/* assert: k > 0 && f == n! / k! */ k > 1)
 {
 f = f * k;
 k = k - 1;
 }

There are two main issues here:

1. Why the loop invariant is actually invariant.

2. Why the loop invariant's truth implies that the program gives the correct
answer.

Let us deal with the second issue first, since it is the main reason loop invariants are of
interest. The loop will terminate only when the test condition, k > 1 in this case, is false.
But since k is assumed to have an integer value and we have the assertion k > 0, this
means that k == 1 when the loop terminates. But we also have the assertion
f == n! / k!. Substituting k == 1 into this, we have f == n!, exactly what we want to
be true at termination.

Now the first issue. Assume for the moment that n > 0 when the program is started. (If
n == 0, then the loop terminates immediately with the correct answer.) Essentially we
are doing induction on the number of times the assertion point is reached. Consider the
first time as a basis: At this time we know f ==1 and k == n. But n > 0, so the k > 0
part of the assertion holds. Moreover, n! / k! == 1, and f == 1 because we initialized it
that way. So f == n! / k! and the full assertion holds the first time.

Inductively, suppose the assertion holds now and we want to show that it holds the next
time we get to the key point, assuming there will be a next time. For there to be a next
time, k > 1, since this is the loop condition. Let f' be the value of f and k' be the value
of k the next time. We see that f' == f*k and k' == k-1. Thus k' > 0 since k > 1.
Moreover, f' == f*k == (n! / k!)*k == n! / (k-1)! == n! / k'!, so the second
part of the invariant holds.

This completes the proof of program 2 by transition induction. Note one distinction,
however. Whereas structural induction proved the program terminated and gave the
correct answer, transition induction did not prove that the program terminated. It only
proved that if the program terminates, the answer will be correct. We have to go back and
give a second proof of the termination of program 2, using guess what? Essentially

Predicate Logic 403

structural induction! However, the proof is easier this time: it only needs to show
termination, rather than some more involved logical assertion. We essentially show:

The loop terminates for k <= 1. This is obvious.

If the loop terminates for k-1, it terminates for k. This is true because k is
replaced by k-1 in the loop body.

Further Reflection on Program Specification

Note that the input specification for factorial above is n >= 0. Although we could run the
programs with values of n not satisfying this condition, no claims are made about what
they will do. A given program could, for example, do any of the following in case n < 0:

a) Give a "neutral" value, such as 1, which is the value of f(0) as well.

b) Give a "garbage" value, something that is based on the computation that takes
place, but is relatively useless.

c) Fail to terminate.

The problem with actually specifying what happens in these non-standard cases is that it
commits the programmer to satisfying elements of a specification that are possibly
arbitrary. It may well be preferable to "filter" these cases from consideration by an
appropriate input specification, which is what we have done.

Another point of concern is that the output specification f == n! alludes to there being
some definition of n!. For example, we could give a definition by a set of rex rules. But if
we can give the rex rules, we might not need this program, since rex rules are executable.
This concern can be answered in two ways: (i) Having more than one specification of the
solution to a problem such that the solutions check with each other increases our
confidence in the solutions. (ii) In some cases, the output specification will not specify
the result in a functional way but instead will only specify properties of the result that
could be satisfied by a number of different functions. Put another way, we are sometimes
interested in a program that is just consistent with or satisfies an input-output relation,
rather than computing a specific function.

Finally, note that specifying the factorial program in the above fashion is a sound idea
only if we can be assured that n is a read-only variable, i.e. the program cannot change
it. Were this not the case, then it would be easy for the program to satisfy the
specification without really computing factorial. Specifically, the program could instead
just consist of:

n = 1;
f = 1;

404 Predicate Logic

Certainly f = n! would then be satisfied at end, but this defeats our intention for this
program. If we declared in our specification

read_only: n

then the above program would not be legitimate, since it sets n to a value.

Another way to provide a constraining specification by introducing an anchor variable
that does not appear in the program. Such variables are read-only by definition, so we
might declare them that way. For factorial, the specification would become, where n

0
 is

the initial value of n and does not occur in the program proper:

int n, n
0
, f;

read_only: n
0

In(n0): n == n
0
 ∧ n

0
 >= 0

Out(n0, f): f = n
0
!

This doesn't look all that much different from the original specification, but now the
"short-circuit" program

n = 1;
f = 1;

does not satisfy the specification generally. It only does so in the special case where
n

0
 == 0 or n

0
 == 1, since only then is n

0
! == 1. We can remind ourselves that anchor

variables are read-only

Array Summation Specification Example

A specification for a program summing the elements of an array a, from a[0] through
a[n-1].

float a[];
float max;
int n;

read_only: a, n

In(n, a): n >= 0

Out(n, a, max): max == sum(i = 0 to n-1, a[i])

Here we have introduced a notation sum to indicate the result of summing an array. As
with some of the other examples, this specification would probably be enough to serve as

Predicate Logic 405

a second solution to the problem if sum were a valid programming construct. An example
of a program purporting to satisfy the specification is:

s = 0;
k = 0;
while(k < n)
 {
 s = s + a[k];
 k++;
 }

Were it not for the read_only specification, we could satisfy the output predicate by
merely setting n to 0 or by setting all elements of a to 0, and setting s to 0.

Using Quantifiers over Array Indices

An array is typically an arbitrarily-large collection of data values. As such, we cannot
refer to each value by name in a specification; we must resort to quantifiers to talk about
all of the elements of an array.

Array Maximum Example

As an example, consider the specification of a program for computing the maximum of
an array in a variable max. Here two things are important for max:

The value of max should be >= each array element.

The value of max should be == some array element.

So the output assertions will be:

(∀ i) max >= a[i]

(∃ i) max == a[i]

where the array bounds are understood, or to make the bounds explicit:

(∀ i) (i >= 0 && i < n) → max >= a[i]

(∃ i) (i >= 0 && i < n) && max == a[i]

The complete specification would then be:

float a[];
float s;
int n;

read_only: a, n

In(n, a): n >= 0

406 Predicate Logic

Out(n, a, s): ((∀ i) (i >= 0 && i < n) → max >= a[i])
 && ((∃ i) (i >= 0 && i < n) && max == a[i])

Array Sorting Example

The following is an example wherein the specification would not readily translate into a
solution of the problem (e.g. using rex). Also, since we intend to rearrange the values of
an array in place, we cannot use the read_only annotation for the array itself. We must
instead introduce a new read-only variable that represents the original array contents. We
will use equal(a, b, n) to designate that a and b have the same values, element-by-
element, from 0 through n.

Array Sorting specification:

float a[], a
0
[];

int n;

read_only a
0
;

In(n, a, a
0
): n >= 0 && equal(a, a

0
, n)

Out(n, a
0
, a): permutation(a, a

0
, n) && sorted(a, n)

For the sorting specification, we used two auxiliary predicates to express Out. By
permutation(a, a

0
, n) we mean that the elements of a are the same as those of a

0
,

except possibly in a different order (their contents are the same when they are viewed as
"bags"). By sorted(a, n) we mean that the elements of a are in non-decreasing order.
We can express sorted in a logical notation as:

 sorted(a, n) is (∀ i) ((0 <= i ∧ i < n-1) → (a[i] <= a[i+1]))

Expressing permutation is messier, due to the need to handle possibly duplicated
elements. If we introduce a notation for counting the number of a given element, say
#(e, a, n) meaning the number of occurrences of e in a, we could define:

permutation(a, a
0
, n) is

(∀ i) (∀ e)

 (0 <= i ∧ i < n) → (e == a[i] → #(e, a, n) == #(e, a0, n))

We could give an appropriate rex-like rules for #(e, a, n):

#(e, a, -1) => 0;

#(e, a, i) => (e == a[i])? 1 + #(e, a, i-1);

Predicate Logic 407

#(e, a, i) => #(e, a, i-1);

The above rules would read: The number of times e occurs in a[0]....a[n-1] is 0. For
i>= 0, the number of times e occurs in a[0]....a[i] is 1 more than the number of
times it occurs in a[0]....a[n-1] if e == a[i]. Otherwise it is the same as the number
of times it occurs in a[0]....a[n-1].

The fact that we need such recursive expressions, which are effectively programs
themselves in an appropriate language, dampens our hope that specifications and
programs can be totally distinct domains of endeavor. Indeed, writing a specification has
much in common with writing a program. In the former, however, we hope for greater
succinctness through the use of an appropriate specification language, such as the
predicate calculus.

Correctness Defined

Given an input/output specification and a program intended to satisfy that specification,
we now focus on what it means to satisfy a specification. Some terminology is helpful.

Partial Correctness: A program P is said to be partially correct with respect to a
specification (a pair of predicates In, Out) in case that:

If the program is started with variables satisfying In (and ip (instruction
pointer) at the initial position), then when and if the program terminates,
the variables will satisfy Out.

Notice the "when and if" disclaimer. Nothing is being claimed for cases where the
program does not terminate,

Termination: A program P is said to terminate with respect to a specification if

If the program is started with variables satisfying In (and ip at the initial
position), then the program will terminate (i.e. will reach a state where its
ip is at the final position).

(Termination does not use the Out part of the specification.)

Total Correctness: A program P is totally correct with respect to a specification
if

The program is both partially correct and terminates with respect to that
specification.

There are reasons why we separate partial correctness and termination in this way:

408 Predicate Logic

(i) Some programs cannot be guaranteed to terminate, so are partially correct at
best.

(ii) Sometimes it is easier to prove partial correctness and termination
separately.

Partial Correctness

The Floyd Assertion Principle

This principle is perhaps the easiest-to-understand way to prove partial correctness. (A
special case of this method is the "loop invariant" idea introduced earlier.) We
demonstrate it using the flowchart model for programs. Each of the nodes in the program
flowchart is annotated with an assertion. The intent of the assertion is to represent
information about the state of the program at that particular node, when and if the ip
reaches that node.

Partial correctness is established by proving a set of verification conditions (VCs)
associated with the invariants, the enabling conditions on the arcs, and the assignments
on the arcs.

The beauty of this method is that, if the assertions are valid, the VCs can be proved
individually in isolation without referring back to the original program. Here is how a VC
relates to an arc in a program: Suppose that the following is a piece of the flowchart,
where Ai and Aj are assertions, E is an enabling condition, and F represents the
assignment being done.

j

{E } F

i A i

jA

Figure 167: Flowchart fragment where nodes i and j have been annotated with
assertions. E represents the enabling condition that must be satisfied for the ip
(instruction pointer) to move from i to j, while F represents the change of state

variables that will occur when the ip moves from i to j.

Specifically, express F as an equation between primed and unprimed versions of the
program variables, representing the values before and after the statement is executed,
respectively. Let A'j be assertion Aj with all variables primed. Then the prototype
verification condition for this arc is:

(Ai ∧ E ∧ F) → A'j

Predicate Logic 409

which is interpreted as follows: If the program's ip is at i with variables satisfying
assertion Ai and the enabling condition E is satisfied, and if F represents the relation
between variables before and after assignment, then A'j holds for the new values. The
names given to Ai and A'j are pre-condition and post-condition, respectively.

Floyd Assertion Example

Consider the following fragment of a flowchart, which has been annotated with assertions
at places i and j.

j

i f == (k-1)! and k <= (n+1)

f == (k-1)! and k <= (n+1)

{ k <= n } (f, k) = (f * k, k + 1)

Figure 168: Fragment of a flowchart program, showing enabling condition,
action, and possible assertions at nodes i and j

The verification condition (Ai ∧ E ∧ F) → A'j in this case has the following parts:

Ai: f == (k-1)! and k <= (n+1)
E: k <= n
F: (f', k') == (f * k, k + 1)
A'j: f' == (k'-1)! and k' <= (n+1)

Notes:
F represents a parallel assignment to f and k. The primed values indicate the
values after the assignment, while the unprimed ones indicate the values before.

n is a read-only variable, so no primed value is shown for it.

Ai and A'j are the same assertion, except that A'j has its k and f variables primed,
to denote their values after the assignment rather than before.

Spelled out more fully, if ξ represents the vector of all program variables, then the
general enabling condition and assignment will take the form

{ E(ξ) } ξ = F(ξ)

while the verification condition for the arc is:

410 Predicate Logic

(Ai(ξ) ∧ E(ξ) ∧ ξ' == F(ξ)) → Aj(ξ')

In summary, in the verification condition, we use an equality between primed variables
and a function of unprimed variables to represent the effect of an assignment to one and
the same set of program variables. The reason for choosing this approach is that we don't
have any other way of relating assignment to a statement in predicate logic.

We continue the example by providing the verification conditions for all of the arcs of the
compact factorial program, repeated here for convenience. The VC that was indicated
above will be recognized as that for the arc going from node 1 to node 1.

0

2

{ k > n }

(f, k) = (1, 1)

{ k <= n } (f, k) = (f * k, k + 1)

1

Figure 169: Compact flowchart for the factorial program

Using A0, A1, A2 to represent the assertions at each node, the verification conditions,
one per arc are:

arc 0 → 1: (A0 ∧ true ∧ (f', k') == (1, 1)) → A'1

arc 1 → 1: (A1 ∧ k <= n ∧ (f', k') == (f*k, k+1)) → A'1

arc 1 → 2: (A1 ∧ k > n ∧ (f', k') == (f, k)) → A'2

To complete the proof, we also need to insure that:

In → A0 and Aexit → Out

where Aexit is the assertion at the exit point. In this and most cases, this is implied by
just equating A0 to In and Aexit to Out.

Before we can actually conduct the proof, we must choose the remaining assertions Ai.
The guidelines for doing this are as follows:

Ai should be always true for the program state whenever the instruction pointer
points to i (i.e. each Ai should be "invariant").

Predicate Logic 411

Let us try to choose appropriate assertions for the factorial example. If we equate A0 to
In and A2 to Out, i.e.

A0: n >= 0

A2: f = n!

we only have to determine an appropriate A1. Let us try as the value of A1 the assertion

f == (k-1)! ∧ k <= (n+1)
By looking at the state-transition diagram, we can get support for the idea that this
condition is invariant. The VCs can now be filled in:

VC01 arc 0 → 1: (A0 ∧ true ∧ (f', k') == (1, 1)) → A'1
 | | | |
 | | | assertion at place 1 (primed variables)
 | | arc assignment
 | arc enabling condition
 assertion at place 0

i.e. (n >= 0 ∧ true ∧ (f', k') == (1, 1))
 → (f' == (k'-1)! ∧ k' <= (n+1))

[n does not get primed, as it is a read_only variable.]

[VC11 was discussed earlier.]

VC11 arc 1 → 1: (A1 ∧ k <= n ∧ (f', k') == (f*k, k+1)) → A'1
 | | | |
 | | | assertion at place 1
 | | arc assignment (primed variables)
 | arc enabling condition
 assertion at place 1

i.e. (f == (k-1)! ∧ k <= (n+1) ∧ k <= n ∧ (f', k') == (f*k, k+1))
 assertion at place 1

 → (f' == (k'-1)! ∧ k' <= (n+1))
 assertion at place 1 (primed variables)

VC12 arc 1 → 2: (A1 ∧ k > n ∧ (f', k') == (f, k)) → A'2

i.e. (f == (k-1)! ∧ k <= (n+1) ∧ k > n ∧ (f', k') == (f, k))
 assertion at place 1

 → f' = n!
 assertion at place 2 (primed variables)

412 Predicate Logic

Example Proofs of Verification Conditions

We have now translated the partial correctness of the program into three logical
statements, the VCs. The proof of the three VCs is straightforward and we can take them
in any order. Since each is of the form H → C (hypothesis implies conclusion), we shall
assume the hypothesis and show the conclusion.

VC01 assume: (n >= 0 ∧ true ∧ (f', k') == (1, 1))
show: (f' == (k'-1)! ∧ k' <= (n+1))

By the rightmost equation in the assumption (f' == 1, k' == 1), what we are to show
follows from a simpler equivalent:

1 == (1 - 1)! ∧ 1 <= (n + 1)
The left conjunct simplifies to 1 == 0! and is true since 0! == 1 by definition of factorial.
The right conjunct 1 <= (n + 1) follows from n >= 0.

VC11 assume: (f == (k-1)! ∧ k <= (n+1) ∧ k <= n ∧ (f', k') == (f*k, k+1))
show: (f' == (k'-1)! ∧ k' <= (n+1))

By the rightmost equation in the assumption, what we are to show follows from a
simpler equivalent:

f*k == ((k+1)-1)! ∧ (k+1) <= (n+1)
i.e.

f*k == k! ∧ (k+1) <= (n+1)

The left conjunct follows from the assumption that f == (k-1)! and the definition of
factorial. The right conjunct follows from the assumption k <= n. [Note that the
assumption k <= (n+1) was subsumed by k <= n in this VC, and therefore was not of any
particular use.]

VC12 assume: (f == (k-1)! ∧ k <= (n+1) ∧ k > n ∧ (f', k') == (f, k))
show: f' = n!

What we are to show is equivalent, using the equation f' == f, to f = n!. This will follow
from the assumption that f == (k-1)! if we could establish that k = n+1. But we have k <=
(n+1) and k > n in our assumption. Since we are working in the domain of integers, this
implies k = n+1.

Having proved these VCs, we have established the partial correctness of our factorial
program.

Predicate Logic 413

A Note on Choice of Assertions

Although Ai does not have to completely characterize the state whenever the instruction
pointer points to i, it must characterize it sufficiently well that all of the VCs can be
proved. The possible pitfalls are:

If Ai is chosen to be too weak (i.e. too near to universally true), then some
successor post-condition might not be provable.

If Ai is chosen to be too strong (i.e. too near to false), then it might not be
possible to prove it from some predecessor pre-condition.

Termination

Termination proofs proceed by an additional sort of reasoning from partial correctness
proofs. One method, which we call the energy function method involves constructing an
expression E in terms of the program variables that:

E never has a value less than 0

On each iteration of any loop, E decreases.

For the second factorial program,

f = 1;
k = n;
while(k > 1)
 {
 f = f * k;
 k = k - 1;
 }

it is very clear that the expression k-1 by itself decreases on each iteration and that 0 is its
minimum, since any attempt to make k-1 less than 0 (i.e. k less than 1) will cause the
loop to terminate.

For the first factorial program,

f = 1;
k = 1;
while(k <= n)
 {
 f = f * k;
 k = k + 1;
 }

414 Predicate Logic

the energy function we want is n - k + 1. The value of this expression decreases on
each iteration, since k increase. Moreover, if n - k is small enough, the condition k <= n,
which is the same as n - k + 1 > 0, is no longer true, so the loop will terminate.

Perspective

For most individuals, the real value of understanding the principles of program
correctness is not mostly for proving programs. More importantly, constructing a
program as if correctness had to be proved will give us better-structured
programs. Poorly structured programs are not only hard to prove; they are hard to
understand and hard to build upon.

10.5 Use of Assertions as a Programming Device

Some languages provide for the inclusion of assertions in the program text. The idea is
that the program asserts a certain predicate should be true at the point where the assertion
is placed. At execution time, if the assertion is found to be false, the program terminates
with an error message. This can be useful for debugging. Various C and C++ libraries
include assert.h, which provides such an assertion facility. The idea is that

assert(expression);

is an executable statement. The expression is evaluated. If it is not true (non-zero), then
the program exits, displaying the line number containing the assert statement. This is a
useful facility for debugging, but it is limited by the fact that the assertion must be
expressed in the programming language. The kinds of assertions needed to make this
generally useful require substantial functions that mimic predicate logic with quantifiers.
The only way to achieve these is to write code for them, which sometimes amounts to
solving part of the problem a second time.

10.6 Program Proving vs. Program Testing

There is no question that programs must be thoroughly tested before during development.
However, it is well worth keeping mind a famous statement by E.W. Dijkstra:

Testing can demonstrate the presence of bugs, but it can never prove
their absence.

The only situation in which this is not true is when a program can be exhaustively tested,
for every possible input. But even for inputs restricted to a finite set, the number of
possibilities is impractically large. Consider the number of combinations for a 32-bit
multiplier, for example.

Predicate Logic 415

10.7 Using Assertional Techniques for Reasoning

Understanding the basis for assertion-based verification can help with reasoning about
programs. The form of reasoning we have in mind includes

"if an assertion is known to be true at one place in the program, what can we say
is true at some other place?"

"if an assertion must be true at one place in the program, what must be true at
some other place in order to insure that the first assertion is true?"

Although we will use textual programs to illustrate the principles, it might be helpful to
think in terms of the corresponding graph model.

Conditional statements

if(P)
 statement-1

Assuming that P as a procedure call has no side-effects, we know that P as an
assertion is true before statement-1. More generally, if assertion A is also true
before the if statement (and P has no side-effects), we know that A ∧ P is true
before statement-1.

if(P)
 statement-1
else
 statement-0

Under the same assumptions, we know that A ∧ ¬ P before statement-0.

While Statements

while(P)
 statement-1

Assuming that P has no side-effects, P will be true before each execution of
statement-1. Also, ¬ P will be true after the overall while statement. (Even if A is
true before the while statement, we cannot be sure that A is true before
statement–1 the next time around, unless P implies A.)

In general, if B is true before the while statement, and statement-1 reestablishes B,
then B will also be true on exit.

416 Predicate Logic

We can summarize this reasoning as follows:

If we can prove a verification condition

(B ∧ P ∧ statement-1) → B

then we can infer the verification condition

B ∧ (while P statement-1) → (B ∧ ¬ P)

Here again, B is called a "loop invariant".

Example – While statement

A typical pattern occurs in the factorial program. The loop condition is k <= n.
The invariant B includes, k+1 <= n. On exit, we have the negation of the loop
condition, thus k > n. Together (B ∧ ¬ P) give k == n+1.

Reasoning by Working Backward

A somewhat systematic way to derive assertions internal to a program is to work
backward from the exit assertion. In general, suppose we know that A is a post-
condition that we want to be true after traversing an arc. We can derive a
corresponding pre-condition that gives the minimal information that must be true
in order for A to be true. This pre-condition will depend on the enabling predicate
E and the assignment F for the corresponding arc, as well as on A. Since it
depends on these three things, and entails the vector of program variables ξ, it is
noted as wlp(A, E, F)(ξ), where wlp stands for "weakest liberal precondition".
A little thought will show that wlp(A, E, F)(ξ) can be derived as:

wlp(A, E, F)(ξ) ≡ (E(ξ) → A(F(ξ)))

In other words, wlp(A, E, F)(ξ) is true just in case that whenever the enabling
condition E(ξ) is satisfied, we must have A satisfied for the resulting state after
assignment.

Notice that in relation to A, wlp(A, E, F) will always satisfy the verification
condition for the corresponding arc, that is, we can substitute A for Aj and
wlp(A, E, F) for Ai in the prototypical verification condition:

(Ai ∧ E ∧ F) → A'j

and end up with a true logical statement. Let's try it. Substituting the formula

Predicate Logic 417

claimed for wlp in place of A, we have:

((E(ξ) → A(F(ξ))) ∧ E(ξ) ∧ ξ' = F(ξ)) → A(ξ')

Suppose the overall hypothesis is true. Then from E(ξ) → A(F(ξ)) and E(ξ), we get
A(F(ξ)). But from the equation ξ' = F(ξ), we then have A(ξ').

Weakest Liberal Precondition Examples

(given) statement (given) post-condition wlp
x = y + 5; x > 0 true → y + 5 > 0,

i.e. y > -5
x = x + 5; x == 0 true → x + 5 = 0

i.e. x == -5
x = x + y; x == 0 true → x + y = 0

i.e. x + y = 0
[x > y] x++; x > 0 x > y → (x + 1) > 0
[x > y] x = x - y; x > 0 x > y → (x -y) > 0

i.e. true
[x > y] x++; y > x x > y → y > (x + 1)

 i.e. false
[x > y] y++; x > y x > y → x > (y + 1)

i.e. x > (y + 1)

A wlp of false says that the given post-condition cannot be achieved for that particular
statement. A wlp of true says that the given post-condition can always be achieved,
independent of the variable state before the statement.

Exercises

1 •• Consider the following program that computes the square of a number without
using multiplication. Devise a specification and show that the program meets the
specification by deriving an appropriate loop invariant.

static long square(long N)
{
long i, sum1, sum2;
sum1 = 0;
sum2 = 1;

for(i = 0; i < N; i++)
 {
 sum1 += sum2;
 sum2 += 2;
 }
return sum1;
}

418 Predicate Logic

The technique shown in this and the next problem, generalizes to computing any
polynomial using only addition. This is called "finite differences" and is the basis
of Babbage's difference engine, an early computer design. It works based on the
observation that an integer squared is always the sum of a contiguous sequence of
odd numbers. For example,

25 == 1 + 3 + 5 + 7 + 9 (sum of the first 5 odd numbers)

This fact can be discovered by looking at the "first differences" of the sequence of
squares: they are successive odd numbers. Furthermore, the first differences of
those numbers (the "second differences" of the squares") are uniformly 2's. For
any n-th degree polynomial, if we compute the n-th differences, we will get a
constant. By initializing the "counter" variables differently, we can compute the
value of the polynomial for an arbitrary argument by initializing these constants
appropriately.

2 •• Consider the following program, which computes the cube of a number without
using multiplication. Devise a specification and show that the program meets the
specification by deriving an appropriate loop invariant.

static long cube(long N)
{
long i, sum1, sum2, sum3;
sum1 = 0;
sum2 = 1;
sum3 = 6;

for(i = 0; i < N; i++)
 {
 sum1 = sum1 + sum2;
 sum2 = sum2 + sum3;
 sum3 = sum3 + 6;
 }
return sum1;
}

3 ••• Consider the following Java code:

// assert X == X0

polylist L = X;
polylist R = NIL;
while(/* */ !null(L))
 {
 R = cons(first(L), R);
 L = rest(L);
 }

// assert R == reverse(X0)

Predicate Logic 419

Here reverse denotes the usual list reversal function. Note that we can apply
reverse to both sides of the equality in the final assertion to get
R == reverse(X0), since for any list R , reverse(reverse(R)) == R. In other
words, we are asserting that this code reverses the original list. What loop
invariant would you assert at /* */ in order to establish that the final assertion
follows from the initial assertion? (You may make use of the functions such as
reverse and append in your loop invariant, as well as "obvious" identities for
these functions.) Give an argument that shows that the final assertion follows
from the loop invariant, and that the proposed invariant really is invariant.

4 ••• For any properties of functions such as reverse and append you used in the
preceding problem, prove those properties by structural induction on appropriate
functional programs for those functions. An example of such a property is:

(∀ X) reverse(reverse(X)) == X

where it is assumed that the domain of X is that of lists.

5 ••• Devise a square-root finding program based on the squaring program above.
Provide a specification and show the correctness of the program.

6 •• Show that the array summation program is totally correct with respect to its
specification.

7 ••• Show that the array maximum program is totally correct with respect to its
specification.

8 •••• Show that the sorting program is totally correct with respect to its specification.

10.8 Chapter Review

Define the following terms:

assert library
assignment
backtracking
DeMorgan's laws for quantifiers
energy function
existential quantifier
Floyd assertion principle
interpretation
N-queens problem
partial correctness
post-condition
pre-condition

420 Predicate Logic

predicate
quantifier
structural induction
termination
total correctness
transition induction
universal quantifier
valid
verification condition

10.9 Further Reading

Babbage, H.P. (ed.) Babbage's Calculating Engines. London, 1889.

Jon Barwise and John Etchemendy, The Language of First-Order Logic, Center for the
Study of Language and Information, Stanford, California, 1991. [Introduction to
proposition and predicate logic, including a Macintosh program "Tarski's World. Easy
to moderate.]

W.F. Clocksin and C. S. Mellish, Programming in Prolog, Third edition, Springer-
Verlag, Berlin, 1987. [A readable introduction to Prolog. Easy.]

R.W. Floyd, Assigning meanings to programs, Proc. Symp. Appl. Math., 19, in J.T.
Schwartz (ed.), Mathematical Aspects of Computer Science, 19-32, American
Mathematical Society, Providence, R.I., 1967. [Introduction of the Floyd assertion
principle.]

Cordell Green, The Application of Theorem Proving to Question Answering Systems,
Ph.D. Thesis, Stanford University Computer Science Department, Stanford, California,
1969. [Seminal work on the connection between logic and program proving.]

R.M. Keller. Formal verification of parallel programs. Communications of the ACM, 19,
7, 371-384 (July 1976). [Applies assertions to general transition-systems. Moderate.]

Zohar Manna, Mathematical Theory of Computation, McGraw-Hill, New York, 1974.
[Examples using Floyd's Assertion Principle. Moderate.]

