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Using Time-Dependent Neural Networks for EEG
Classification

Ernst Haselsteiner and Gert Pfurtscheller

Abstract—This paper compares two different topologies of
neural networks. They are used to classify single trial electroen-
cephalograph (EEG) data from a brain–computer interface (BCI).
A short introduction to time series classification is given, and the
used classifiers are described. Standard multilayer perceptrons
(MLPs) are used as a standard method for classification. They are
compared to finite impulse response (FIR) MLPs, which use FIR
filters instead of static weights to allow temporal processing inside
the classifier. A theoretical comparison of the two architectures is
presented. The results of a BCI experiment with three different
subjects are given and discussed. These results demonstrate the
higher performance of the FIR MLP compared with the standard
MLP.

Index Terms—Brain–computer interface, electroencephalo-
graph (EEG), finite impulse response multilayer perceptron (FIR
MLP) networks, neural networks.

I. INTRODUCTION

A N electroencephalograph (EEG)-based communication
system, also known as brain–computer interface (BCI),

can provide a new communication channel for patients with
several motor disabilities, such as brain stem infarct or amy-
otrophic lateral sclerosis [1], [2]. EEG-based BCI can be used
by “locked-in” patients to choose letters or words on a monitor
by using a “language supporting program” [3].

Current BCI systems use slow cortical potentials [4] or
rhythmic brain activities in the alpha and beta band to distin-
guish between different output classes [5]. The BCI prototype
developed in Graz is based on two characteristic EEG patterns
caused by two different types of motor imagination. The
EEG patterns, associated with left- and right-hand movement
imagination, are analyzed and classified on-line [6].

This paper addresses classification of these signals using
neural networks. Neural networks are used, because they
provide a well-established framework for pattern-recognition
problems. The most common type, the standard multilayer
perceptron (MLP), is compared to an extension of MLP,
which allows temporal processing inside the classifier. This
is achieved by replacing static weights with finite impulse
response (FIR) filters. This type of network is therefore called
FIR MLP. The motivation for using a classifier capable of
temporal processing is that the patterns to be recognized are
not static data but time series. Thus, the temporal information
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of the input data should be used to improve classification
results. This can be done with a static classifier like MLP and a
mapping of the temporal input data to static data. Another way
is to use a classifier with temporal processing like FIR MLP.
These two approaches are compared in this work.

Section II describes the Graz BCI system. The BCI exper-
iments done in Graz are explained, and the data obtained are
described. Section III deals with time series classification using
neural networks. Two different topologies are introduced in Sec-
tions IV and V. In Section VI, the results of the experiments are
given. This is followed by a discussion of the results in Sec-
tion VII. Finally, Section VIII concludes the paper.

II. BCI PARADIGM

The subject, whose EEG is to be recorded, sits in a chair in
front of a monitor and tries to control his EEG activity in accor-
dance with some cues given on the monitor. Each trial lasts 8 s.
The timing of a single trial can be seen in Fig. 1.

From second 0 to second 2, only a cross on which to focus at-
tention at the center of the screen is given. Then, a short warning
tone (“beep”) is delivered, and one second later an arrow ap-
pears over the cross. This arrow points either to the right or to
the left, telling the subject whether to imagine right- or left-hand
movement. After 1.25 s, the arrow disappears and the feedback
in form of the outline of a rectangle appears in the center of the
screen. It begins to extend horizontally toward the right or left
side. This horizontal bar is the only feedback given. It is con-
trolled by a classifier based on linear discriminant analysis [7].
The length of the bar and the direction, in which it is extending
(left or right), comes from that classifier. This feedback stays
on the screen until the end of the trial. The subject’s task is to
extend the bar toward the left or right boundary of the screen,
depending on the direction of the arrow presented at second 3.
The sequence of the “right” and “left” trials is determined ran-
domly.

To control the feedback, the subjects are told to imagine right-
or left-hand movement depending on having an arrow pointing
to the right or to the left, respectively. It is important to note that
the subjects are told to remain relaxed and to avoid any actual
movement while doing the imagination task.

The EEG was recorded using two bipolar leads with chlorated
silver disc electrodes over left and right central areas. Channel
“central left” (CL) was derived as the difference between an
electrode placed 2.5 cm anterior to C3 (according to the interna-
tional 10–20 system [8]), and an electrode placed 2.5 cm poste-
rior to C3. Channel “central right” (CR) was derived similarly as
the difference between two electrodes: one placed 2.5 cm pos-
terior to C4, and the other one placed 2.5 cm anterior to C4.
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This gives two channels, CL and CR, which are used in further
processing. The sampling rate was 128 Hz, and signals were
bandpass filtered between 0.5 and 35 Hz. This frequency band
contains the alpha and the beta band. It is known [6] that the
EEG patterns for BCI classification appear in these frequency
bands. Because there is no perfect cutoff at 35 Hz, the sampling
frequency was chosen high enough to avoid aliasing effects.

III. T IME SERIESCLASSIFICATION WITH NNS

The main difference between classification of static patterns
and time series is the additional dimension time. In the static
case, there is no relationship between different patterns. Thus,
each pattern can be processed individually. If time series are to
be classified, a set oforderedpatterns has to be processed. It is
the goal of time series classification to use that additional infor-
mation encoded in the order of the patterns, to improve classi-
fication accuracy. A time seriescan be written as a sequence
like

where are the individual patterns of time series. A trivial
solution is individual classification of each using a standard
classifier for static patterns. The classification result of the
whole time series can either be the classification result of a
certain element or some combination of the results of a set
of elements of .

This approach is easy to implement but has two major draw-
backs. First, the information encoded in the order of the ele-
ments of is not exploited for classification, because elements
are processed individually. Second, the problem of choosing an
individual element or a set of elements to represent the whole
time series is nontrivial.

That motivates a method using the temporal information for
classification purpose. The elements ofare fed into the clas-
sifier according to the sequence in which they appear in. At
every time step, the output of such a classifier should make use
of the information contained in a sequence of elements. Ideally,
the output depends on all elements ofprocessed so far.

In terms of neural networks, two different ways of achieving
this temporal processing are feasible. They are described in the
following paragraphs.

A. External Temporal Processing

External temporal processing means that the additional di-
mension time is handled outside the classifier. A subset of indi-
vidual patterns of a time series is used to build one input
pattern for the neural network. In the simplest case, the indi-
vidual patterns are rearranged to form one larger pattern.
The larger pattern should ideally represent the whole time se-
ries. Thus, only the single patternhas to be processed by the
neural network. For the simple case of just rearranging the indi-
vidual patterns, the process is illustrated in Fig. 2.

Of course, more complicated strategies to build up pattern
can be used. For example, statistic measures or fast Fourier

transforms can be applied to getfrom .
The main advantage of this approach is the use of a simple

neural network for static pattern classification. Well-known

Fig. 1. Timing of a single BCI trial.

Fig. 2. Using a standard classifier for time series processing. The individual
patternsx are combined to build a new pattern, which the static classifier
processes.

architectures like MLP [9] can be applied. Also the learning
process is easy, as a lot of well-known learning procedures
are available. The drawback of this approach is the problem
of building a pattern from the individual patterns . There
is no standard procedure, and the selection has to be done
before training the network. Hence, the selection ofs is
fixed and cannot be adapted during learning of the network.
If simple rearrangement is used, the input dimensionality will
grow linearly with the number of simple patterns, which
build up . In general, this growth leads to larger networks
with more weights. Thus, more training data are needed, and
the generalization capability of the network is expected to
decrease. Furthermore, the external temporal processing is
fixed and not dependent on the actual time series.

An actual implementation of this approach is discussed in
more detail in Section IV.

B. Internal Temporal Processing

In this approach, the processing of the temporal dimension is
done inside the classifier. Thus, the input to the classifier at time
step is the element of the time series . This is illustrated in
Fig. 3.

The main advantage of this approach is the combination of
temporal processing and classification. The processing of time
is done inside the classifier and can be used directly by the
classification procedure. The input dimensionality of the net-
work does not grow with the number of time steps used. This
keeps the number of free parameters of the classifier small,
which makes learning easier and improves generalization ca-
pability. Besides, no fixed strategy has to be used, because the
way of temporal processing can be determined by the classifier
during the training phase. Given an ideal learning procedure, the
strategy of temporal processing can be learned from the training
examples.
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Fig. 3. At each time step, only one element ofx is presented to the classifier.
The temporal processing is done inside the classifier.

Finding such an ideal procedure and an appropriate neural
network architecture is the main problem of this approach. As
these kinds of neural networks are not very common, little liter-
ature on this topic exists [10], [11].

IV. MLP TOPOLOGY

In this section, an external temporal processing approach
using a standard multilayer perceptron [9] is described. The
temporal processing is done outside the classifier. The given
time series is transformed into one single pattern, which is
the input to the neural network.

This transformation is done by combining a set of elements
of into one input vector . The selection of the indexes

is based on a priori knowledge about the given time series and
is limited by computational resources. As there are 2possible
subsets, whereis the number of elements of, it is impossible
to check all possible subsets. Hence, the experiments have to be
restricted to a few different sets. This is one of the drawbacks of
this approach.

Another disadvantage of this topology is the strong depen-
dence of the number of free parameters of the classifier (i.e., the
weights of the neural network) on the sizeof the chosen subset
of indexes . Each time step is represented by a vector of some
fixed dimension . Thus, for the dimension of follows

Using an MLP for classification of , the number of input
units equals . The total number of weights of an
MLP with two fully connected layers, two output units, and
units in the hidden layer can be calculated as

(1)

The two last terms are caused by the bias weights of each
neuron. Fig. 4 illustrates the described topology. Two output
units were used, because the two classes were encoded as (0,
1) and (1, 0), respectively. In this two-class problem, the use of
only one output unit is also possible and yields the same results.

In the special case of , no temporal processing is done
and the result of the classification depends only on one single
time step.

Fig. 4. Standard MLP topology withr �d(x ) input units,m hidden units, and
two output units.

Fig. 5. The unitsu andu are connected to unitu using FIR filters instead
of two scalar weights. Each filter is of the third order and has four coefficients
or weights. Nonlinearities can only appear inside unitsu.

V. FIR MLP TOPOLOGY

The FIR MLP topology [10], [11] is a natural extension of the
standard MLP. The temporal processing is done using FIR filters
[12]. The static weights of a standard perceptron are replaced by
such filters. The number of delay units in each filter is the order

of the filter. Fig. 5 shows a network with three units connected
by two third-order FIR filters.

A filter of order uses 1 different time steps to calculate
the output of the filter, which is the input for the next neuron.
Thus, the filter needs 1 coefficients, which are often called
weights in the context of neural networks. By using these filters,
the temporal processing takes place inside the classifier, and the
strategy used is encoded in the weights of the filters. Thus, this
strategy can be learned from given examples by adapting the
weights.

Fig. 6 displays the structure of such a classifier.
In this study, all connections between neurons were replaced

by FIR filters. The order of the filters was fixed to for the
hidden layer and to for the output layer. Of course, each
filter can be of different order. However, it is not clear how to
choose the order for each filter in advance. For this reason, the
order of the filters in each layer was set to the same value. During
learning, the order of individual filters can be decreased by set-
ting corresponding coefficients to zero or close to zero.
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Fig. 6. The static weights are replaced by FIR filters. The temporal processing
is done inside the classifier.

If the order of a filter is set to zero, this filter will become a
static weight. If the order of all filters of the network is set to
zero, the FIR MLP will default to a standard MLP.

It is also possible to include an additional gain term in each
filter, which multiplies the output of the filter by some scalar. As
described in [13], this gain term should speed up and improve
learning. If the output of a filter needs to be amplified, it will
be easier to adjust the single gain term than to adjust each indi-
vidual coefficient. However, the gain term is also an additional
free parameter, which makes learning harder. Experiments with
and without gain terms showed that for the Graz BCI applica-
tion networks without gain terms performed better.

The FIR MLP architecture can also be considered a kind of
time-delay neural network (TDNN), proposed by Waibel [14]. It
can be shown that both architectures are functionally equivalent.

An advantage of the FIR MLP topology is the reduction of
free parameters compared to the MLP with external temporal
processing. The number of free parameters of a network
like the one shown in Fig. 6, with hidden units and two output
units, is

(2)

The term is the dimension of an element of the time se-
ries. The two last terms are caused by the bias weights of each
neuron.

The following example is used to demonstrate the reduction
of free parameters by using FIR MLP instead of MLP. The max-
imum number of elements of the time series that can be used for
classification is called memory depth . For the MLP classi-
fier with external temporal processing, equals the number
of elements used to form the input vector(see Fig. 4). In the
case of the FIR MLP architecture shown in Fig. 6, the memory
depth equals the number of delays between the input and the
output of the network plus one, because the current input is also
used. This yields the following equation for :

(3)

To compare an MLP to an FIR MLP topology, is fixed
to eight for both architectures. The dimension of a single ele-
ment of the time series is set to 12, because this is the value
that was used in the experiments (see Section VI). Based on this
assumptions, the number of free parameters is calculated. This
gives the number of weights necessary to get a memory depth
of 8. Using (1), this gives

Using (2) requires one to set the filter order for the hidden and
the output layer. To satisfy the assumption,
and were chosen. This gives according to
(3). From (2) follows

This shows the significant reduction of free parameters caused
by the architecture of the FIR MLP network providing the same
memory depth as an MLP network.

Another important difference between FIR MLP and MLP
is the more efficient use of the training data by the FIR MLP
network. There are two basic procedures for training FIR MLP
networks: the so-called temporal backpropagation by Wan [10],
[15] and the algorithm by Back and Tsoi [11] Both algorithms
produce weight updates for each element of the time series.
They differ slightly in the way of calculating local errors during
backpropagation [13].

In the case of MLP, there is only one weight update per time
series. Thus, for a time series consisting ofelements, there are

times more weight updates in the FIR MLP architecture than
in the MLP network.

The reduction of free parameters and the more efficient use
of the training data are two advantages of the FIR MLP, which
make the estimation of the weights easier and able to yield better
generalization.

However, there is also a drawback of the FIR MLP approach.
Target values have to be provided for each element of the time
series, instead of having one target for the whole time series.
To overcome this problem, the same target can be used for all
time steps, or more advanced techniques like adaptive dynamic
targets [16] can be used. It is also possible to provide targets for
certain time steps only and generate no errors at the remaining
time steps [17].

VI. RESULTS

The experiments were carried out using data of three dif-
ferent subjects. The subjects are referred to as f7, g3, and i2
in the following text. All the data were obtained from the BCI
experiment described in Section II. The trials were manually
inspected for artifacts, and only artifact-free trials were used.
Table I shows how many artifact-free trials of each subject were
used and which period of time was used for each subjects. The
selection of individual periods for different subjects is based on
results of previous studies [6]. The use of different periods for
each subject reflects the different timing of characteristic EEG
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patterns caused by imagination. All the moments of time given
refer to the BCI experiment, as described in Fig. 1.

The raw EEG data was not classified directly. An adaptive
autoregressive (AAR) model of order six was used to charac-
terize the EEG. AAR models are a general tool for signal mod-
eling. Such a model was continuously adapted to the current
EEG signal, and the coefficients of the AAR model were used
as features for the classifier. The model order of six was chosen
based on previous studies on describing EEG data with AAR
models [18]. Because the coefficients of the AAR model change
much more slowly than the raw EEG, which they describe, only
each sixteenth time step was used. This gives a temporal reso-
lution of 8 Hz. Each of the two EEG channels, CL and CR, was
characterized by a sixth-order AAR model. For classification,
all coefficients of both models were used, yielding 12-dimen-
sional feature vectors.

The MLP architectures were trained with a standard back-
propagation procedure as described in [9]. The training was
stopped when the error rate on a validation set stopped to de-
crease or started to increase. The FIR MLP architectures were
trained using Wan’s temporal backpropagation. This algorithm
showed slightly better performance than the algorithm of Back
and Tsoi. The coefficient of the AAR models, which are used
as features, change slowly. That might be the reason for the
better performance of Wan’s algorithm. This agrees with the re-
sults presented in [13]. The stopping criterion of the FIR MLP
training was also the error rate on a validation set.

All results shown were obtained using five-fold cross vali-
dation. Therefore, the data set of each subject was divided into
three sets. The training set (60% of the data) was used to train
the networks, the validation set (20% of the data) was used for
the stopping criterion, and the test set (20% of the data) was used
to calculate the final classification accuracy. After splitting up
the data, five classifiers with different initial conditions were
trained. They were used to form a committee by averaging their
outputs [19]. This procedure of splitting up the data set, doing
the training, and building committees was done five times for
each experiment on each subject. The average results on the test
sets and 95% confidence intervals are given for each experiment.

A. MLP Results

In the first experiment, only one time step was used to classify
the time series. This leads to an architecture shown in Fig. 4
with . The number of hidden units was varied between
one and four. The time stepused for classification was varied
within the useful range of each subject (see Table I). The two
best results of each subject are given in Table II.

The table also gives the moment of time, which yielded the
minimal error rate. It can be seen that the error rate achieved
strongly depends on the subject. The three subjects chosen for
this study represent a wide range. Subject g3 performs very well,
subject f7 is kind of average, and subject i2 gives only poor
results.

Furthermore, architectures using two time steps for classifi-
cation were used . The distance between the two time
steps was fixed. This means the input vector to the classifier was
a combination of the feature vectors at time stepand time step

. The value of was varied within the useful range of each

TABLE I
NUMBERS OF ARTIFACT-FREE TRIALS AND

PERIOD OFTIME USED FORCLASSIFICATION FOREACH SUBJECT

TABLE II
ERROR RATES USING MLP ARCHITECTURE WITH ONE TIME STEP

AND m HIDDEN UNITS

TABLE III
BEST ACHIEVED ERRORRATES USING MLP ARCHITECTURE WITHTWO

TIME STEPS ANDPARAMETERSm AND �

person. was varied between 0.125 and 0.5 s with a step size of
0.125 s. The number of hidden unitswas varied between one
and four. Table III shows the two best results of each subject.

Experiments using three different time steps were done, but
within the used combinations of three time steps no significant
improvements were found. Furthermore, the number of possible
subsets becomes too large to do systematic tests. That is why no
further investigations on sets with three or more time steps were
done.

B. FIR MLP Results

The results were obtained with an FIR MLP architecture, as
described in Section V. In this work, no gain terms were used.
The orders of the filters of the first and the second layer were
fixed to and , respectively. Different values for these
two parameters as well as for the number of hidden unitswere
used. The number of hidden units was varied between one
and four. A total of ten different combinations of , and

were investigated. For each combination and each subject,
cross validation, as described previously, was applied. The two
best results of each subject are given in Table IV.

VII. D ISCUSSION

A. Using Multiple Time Steps

From the results in Tables II and III, it can be concluded that
using multiple time steps to classify a given time series does



462 IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 8, NO. 4, DECEMBER 2000

TABLE IV
ERRORRATES USING FIR MLP ARCHITECTURE WITHm HIDDEN UNITS, q

DELAYS IN THE FIRST LAYER, AND q DELAYS IN THE SECONDLAYER

Fig. 7. Using one time step (circular marks) versus two time steps (triangular
marks) for classification of subject f7.

Fig. 8. Using MLP network (triangular marks) versus FIR architecture (square
marks) for classification.

reduce the error rate. Fig. 7 shows the performance of the best
classifier using one time step versus the performance of the best
classifier using two time steps for classification of subject f7.
The error rate is displayed as a function of time, where refers
to the moment of time of a BCI trial, as shown in Fig. 1. Only
the values at the marked positions were calculated. They were
connected by lines for illustration purposes.

Using a -test with a level of significance , it can be
shown that the results of subject f7 for s are signifi-
cantly better if two time steps are used for classification.

Furthermore, the results of the other two subjects, g3 and i2,
improved as well when two time steps instead of one were used.
This presents strong evidence that using temporal information
yields better classification accuracy.

B. MLP Versus FIR MLP

The results given in Tables III and IV demonstrate the
improvement caused by using FIR MLP networks instead of
MLP networks. Fig. 8 illustrates this by showing the best result
achieved using MLP architecture and the best result using FIR
MLP networks of subject f7.

With subject f7, the best error rate achieved of 12.0% using
FIR MLP is significantly better than the best error rate of 14.1%
achieved by the MLP approach. This can be shown using a-test
with a level of significance . Also, the results of the
FIR MLP network of the other two subjects, g3 and i2, are sig-
nificantly better than those of MLP architectures.

The use of FIR MLP architectures also reduces the variations
between different classifiers trained on the same data. This can
be seen by comparing the sizes of the 95% confidence intervals
given in Tables III and IV.

There are two main reasons for the better performance of the
FIR MLP architecture. On the one hand, the classifier is much
better suited for exploiting temporal information contained in
the time series to be classified. On the other hand, the training
of this classifier is much more efficient because all time steps
of the time series can be used, which increases the number of
training samples and helps to produce a more robust classifier.

VIII. C ONCLUSION

In this paper, a comparison between using standard MLP clas-
sifiers and using FIR MLP networks for single trial EEG classi-
fication is given. In the case of MLP networks, it is shown that
the error rate can be reduced if the classifier uses a feature vector
comprising two time steps of the given time series instead of one
single time step.

The best results of the MLP architecture are compared
against those of an FIR MLP network on the same problem.
The achieved error rates as well as the robustness of the FIR
MLP classifiers demonstrate the better performance of the FIR
MLP networks in comparison with the standard MLP networks.
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