
IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 8, NO. 2, JUNE 2000 203

Parallel Man–Machine Training in Development of
EEG-Based Cursor Control

Aleksander Kostov and Mark Polak

Abstract—A new parallel man–machine training approach to
brain–computer interface (BCI) succeeded through a unique application
of machine learning methods. The BCI system could train users to control
an animated cursor on the computer screen by voluntary electroen-
cephalogram (EEG) modulation. Our BCI system requires only two to
four electrodes, and has a relatively short training time for both the user
and the machine. Moving the cursor in one dimension, our subjects were
able to hit 100% of randomly selected targets, while in two dimensions,
accuracies of approximately 63% and 76% was achieved with our two
subjects.

Index Terms—Brain–computer interface (BCI), communication, control,
electroencephalograph (EEG)-processing, machine learning, severe neuro-
muscular disability.

I. INTRODUCTION AND COMMUNICATION TASK

Assistive devices are essential in enhancing the quality of life for
individuals who have severe disabilities, such as quadriplegia and
amyotrophic lateral sclerosis, or who have had massive brainstem
strokes. However, the effectiveness of most assistive devices is depen-
dent on preserved residual movements or speech. Without any physical
channels for control, the only alternative for these people may be in
exploring indirect voluntary modulation of electrical fields resulting
from neural processes in their brains. This can provide control signals
for a simple interface between the user and the computer known as a
brain–computer interface (BCI). A frequently used model for a devel-
opment of a BCI is to control the cursor movements and its positioning
on a computer screen. This model requires the subject to learn how
to modulate their electroencephalograph (EEG) signals voluntarily by
using different thought patterns for different tasks. The problems that
remain unsolved even with the most current and successful systems
are the slow training of subjects, low spatio-temporal resolution, and
poor accuracy in two-dimensional (2-D) control. Precise positioning
of the controlled cursor has so far not been achieved. What adds to
the difficulty of this research is that a new subject does not know
what thought patterns are going to give the best results, so initially the
subject and machine are learning in parallel.

Currently there are two main approaches to a subject’s training with
BCI systems that do not require external stimuli. One approach uses�-
or sensory-motor-rhythm and/or� rhythm recorded over sensory motor
cortex which are sensitive to physical and imaginary movements of the
extremities [1], [2]. The second approach uses a wider distribution of
EEG signals and more abstract thought patterns that are not movement
related [3], [4]. One example of this approach that is simple for sub-
jects to learn and duplicate is using relaxing thoughts for one direction
of cursor movement and stressful thoughts for the other. After several
sessions these thoughts will be spontaneously replaced with more di-
rect thoughts representing the subject’s desire to move the cursor in
one direction or the other. The second approach is more natural because
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Fig. 1. BCI experimental setup.

after the first few sessions it does not require indirect movement-related
thoughts to control the cursor, which may be difficult to use in prac-
tical applications. To achieve the training with the second approach, the
training system has to include very fast feedback that will enable the
subject to experiment with various thoughts and to quickly see which
ones work better for particular task.

The goal of our research is to develop a new training technology
that will achieve simple control using various mental activities while
taking the advantage of parallel learning process. The control actions
that we want to achieve are 2-D (up–down–left–right) cursor move-
ments on the computer screen, with precise positioning. These actions
are sufficient to use any computer program in GUI (Graphical User
Interface) operating environment (e.g., MicroSoft Windows- or Mac-
intosh-based computers) and previously developed assistive software.
To achieve this goal in our Laboratory for Advanced Assistive Tech-
nology, we are working on the development of an EEG recording and
processing setup, and training methods that will maximize efficiency
of extraction of the user’s intentions. In order to make future BCI prac-
tical, the following three constraints have to be satisfied.

1) Minimize the training time for the final user. Current systems
often require weeks of training before reasonable performance
is achieved. Long training is usually one of the main obstacles of
better acceptance of any new practical assistive system.

2) Use as few EEG electrodes as possible. A BCI with too many
electrodes becomes costly, cumbersome, and less feasible for fu-
ture implantation.

3) Achieve sufficiently high accuracy to provide a reliable interface
between the user and the computer.

II. M ETHODS AND COMMUNICATION PROTOCOL

The subject is comfortably seated in front of a feedback monitor
while EEG signals are recorded using up to 28 gel-filled electrodes
preinstalled in an ECI electrode cap (Electro Cap Inc.) and arranged
according to the 10–20 international electrode system [5], one ground
electrode and the linked-ears reference. The electrode cap and EEG-
preamplifiers are optically isolated from the rest of the equipment. This
provides safety for both the subject and the experimenter. For signal
conditioning, i.e., amplification and initial filtering, we use the Brain
Imager (Neuroscience Inc.). Analog EEG signals picked up by the elec-
trodes are digitized at 200 samples/s by a data acquisition card AT MIO
64E-4 (National Instruments) inserted in an IBM PC compatible com-
puter. The same computer has special video card splitting the video
output into two high-resolution monitors, one for the subject and one
for the experimenter supervising the session.

To simplify the EEG-signals and to extract their components that
are most relevant to our control task, overlapping windows of digital
signals are further processed by an autoregressive (AR) feature extrac-
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Fig. 2. Averaged FFT spectrum of EEG signals recorded during (1-D) BCI control session.

tion method resulting in a small number of AR coefficients. We exper-
imented with various numbers of AR coefficients and concluded that
even only four AR coefficients can represent each voluntarily modu-
lated EEG-signal [6]. Continuous arrays of these coefficients are as-
signed to particular task (up–down–right–left) and used to train the
classifier.

An Adaptive Logic Network (ALN) is the adaptive neural network
that we use to classify the EEG patterns in the on-line experiments.
ALN is a nonlinear adaptive machine learning system for supervised
learning that is capable of approximating any continuous function to
any degree of accuracy [7].

During the real-time experiments, selected channels of EEG are dig-
itized and recorded on the computer’s hard drive. Our method carries
out signal processing on channels used for control, extracts important
features from the signals, presents the selected features to the ALN’s
for training [6], [8], evaluates the ALN to determine direction of cursor
movement, and updates the cursor position on the subject’s screen.
Some subjects use two manual switches to mark sequences of volun-
tary attempts to mentally control the movement of a circular object on
the feedback screen. Since mental concentration is required to produce
desired EEG signals, these switches allow the subject to rest during
the experiment and avoid fatigue or habituation. The subject’s goal is
to move the object on the screen to a target. The position of the target
is alternated between UP and DOWN in one-dimensional (1-D) setup
or between UP, DOWN, LEFT and RIGHT in 2-D setup. When the
cursor reaches the target, or misses by reaching the edge of the screen,
a new target position is chosen. An example of the subject’s screen can
be seen in Fig. 1. We chose cursor movement because it is objective,
easily implemented, simple for the user to learn, and can serve as a pro-
totype for control of a wide variety of applications.

III. T HE ASSESSMENT OFRESULTS AND THERESULTS

We trained several subjects to achieve reasonable control over the
object on the screen in one dimension. Acquiring control with our BCI

takes some training, but most of our subjects were able to demonstrate
some control even after only two 30-min sessions. The first half of each
session is used to train a new ALN classifier. During the training phase,
the ALN trains in real-time as the subject is attempting to move the
cursor toward the target. Once the subject achieves control, the ALN
training is halted and the second half of the session is used to eval-
uate the performance. Performance is evaluated in terms of how many
times the target is hit versus missed at various movement speeds of
the cursor. During these sessions, the position of the object is updated
every 50 ms and the speed of the animated cursor is determined by
the number of steps that are required to hit the target, which is set by
the operator before the experiment. Once fully trained in 1-D control,
our subjects can hit the target close to 100% of the time when 32 full
steps are required to hit or miss the target. The spectrum for one of
our subjects, calculated by fast Fourier transform (FFT) during off-line
data analysis, is shown in Fig. 2. As can be seen from Fig. 2, a large
difference in spectral power density exists at around 10 Hz between
the EEG recorded while the subject was thinking UP-thoughts as com-
pared to DOWN-thoughts. It is interesting that this effect is reversed
at the parietal electrodes, which confirms expectations that the source
of this voluntary activity is somewhere underneath central and parietal
electrodes.

So far we have been able to train only two subjects to achieve
2-D cursor control. One of the subjects is able-bodied person and
the other one has post-polio syndrome. In their latest session, these
subjects achieved 2-D cursor control with 70 and 85% of the targets
hit, respectively. An average of the latest four sessions for each subject
is 63 and 76%.

IV. FUTURE PLANS

Our short term goals are to train a number of volunteers in 2-D cursor
movement and positioning, as well as to develop a range of applications
for the BCI.
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Applications of Cortical Signals to Neuroprosthetic
Control: A Critical Review

Richard T. Lauer, P. Hunter Peckham, Kevin L. Kilgore, and
William J. Heetderks

Abstract—Cortical signals might provide a potential means of in-
terfacing with a neuroprosthesis. Guidelines regarding the necessary
control features in terms of both performance characteristics and user
requirements are presented, and their implications for the design of a first
generation cortical control interface for a neuroprosthesis are discussed.

Index Terms—Cortical interface, electroencephalogram (EEG), neuro-
prosthesis.

I. INTRODUCTION

Neuroprosthetic systems provide function by electrical stimulation
of paralyzed muscles in a coordinated fashion. The individual using the
system can control the stimulation, usually through movement of some
nonparalyzed part of the body. For example, in the Case Western Re-
serve University (CWRU)/VA hand-grasp neuroprosthesis [1], [2], the
user controls opening and closing of his or her hand by movement of
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the contralateral shoulder. This movement is sensed by an external po-
sition transducer that is taped to the user’s shoulder and chest. The com-
mand signal is sent to an external control unit, which converts the signal
into the appropriate stimulus level for each muscle. This signal is sent
through a radio frequency (RF) link to the implanted stimulator unit,
which in turn generates a stimulus pulse train of the appropriate mag-
nitude to each electrode placed on the different muscles of the forearm
and hand. By coordinating the activation of each muscle, a functional
grasp pattern is achieved.

The user controls the degree of opening and closing of the hand by
movement of the contralateral shoulder—moving the shoulder forward
(protraction) results in hand closing, moving the shoulder back (re-
traction) results in hand opening. The control is proportional, allowing
the user to modulate the grasp force for the desired task by adjusting
shoulder position. The neuroprosthesis also uses a state control input
(typically a chest mounted switch) that enables the user to select dif-
ferent pre-programmed grasp patterns, to turn the device on and off,
and to lock and unlock the hand.

Ongoing research and clinical experience has defined limitations that
are inherent in the shoulder generated command signal and its hardware
implementation. First, shoulder control is restricted to the contralateral
arm, thus restricting bilateral implementation of the neuroprosthesis.
Second, the external mounting is cumbersome, necessitates external
wiring, and performance varies somewhat with mounting differences.
Current research is designed to overcome these deficiencies. In partic-
ular, an implantable transducer that senses the position of the ipsilateral
wrist has been designed and clinically implemented [3]. Also, myoelec-
tric control has been assessed as an alternative command signal, using
the EMG signal from retained muscles [4], [5] as the control source.
Nevertheless, all of these signal sources are somewhat unnatural and
require the user to learn to relate an artificial command with the in-
tended movement. It is in this dimension of natural control that a cor-
tical interface provides the greatest potential.

II. CHARACTERISTICS OF THECOMMAND CONTROL INPUT

The characteristics of the command signal for a hand neuroprosthesis
should enable the user to utilize a natural method to select a grasp pat-
tern, regulate hand opening/closing and the grasp strength, and main-
tain grasp. The principal feature of the command signal is proportional,
single degree of freedom information under user volitional control de-
livered at a sufficient accuracy and speed to provide appropriate control
of the hand. Acceptable factors to achieve this type of control can be
separated into performance and user criteria. A partial review of these
criteria has been compiled elsewhere [6], [7]. These criteria are shown
in the following sections.

A. Performance Criteria

1) One Degree of Freedom:A single degree of freedom input
signal will enable control of both hand opening/closing and grasp
strength. Control of some other upper extremity movement (e.g.,
elbow extension, forearm pronation) can be linked to synergistic
movements [8], [9], thus reducing the demands of the controller. Other
movements (e.g., shoulder) will require a separate control input. For
the operation of the contralateral hand, a second control input will
also be required since sequential control of the hand is not clinically
acceptable.

2) Stability over Time:Stability is required to enable day-to-day
consistency of the command input. This is addressed further in the dis-
cussion section as applicable to cortical signals.
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