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An Efficient Method for Quantifying the Multichannel
EEG Spatial-Temporal Complexity

Pei-Chen Lo* and Wen-Po Chung

Abstract—The complexity index ( ) quantifies the intrinsic dimension-
ality of the global complexity of a point set, and was shown to be able
to characterize electroencephalogram spatial-temporal features. The com-
plexity index is conceptually comprehensible and easily implemented, yet,
it is time consuming. In this paper, we present an efficient computational
method based on the projection of the high-dimensional state-space points
onto a one-dimensional axis. The computational time decreases by at least
50%, without affecting the measure accuracy.

Index Terms—Complexity index, global waveform complexity, intrinsic
dimension, multichannel EEG (electroencephalogram), spatial-temporal
feature, state-space trajectory.

I. INTRODUCTION

The electroencephalogram (EEG) is an important clinical tool for
diagnosing and monitoring the nervous system regarding normal or
pathological conditions. The temporal and spatial EEG features pro-
vide a basis for the detection of focal pathologies [1]. To deal with an
enormous amount of recorded EEG, data quantification has been the
primary step of EEG analysis. In addition to the popular time-domain
and frequency-domain approaches, other techniques have been intro-
duced and proved useful in EEG analysis [2]. Among them, methods
based on the nonlinear dynamical theory have been used for over a
decade to quantify the underlying brain dynamics and evaluate the EEG
waveform complexity [3]–[6]. Nonetheless, tools from nonlinear dy-
namical theory used for EEG analysis, such as the dimensional com-
putation and Lyapunov exponent estimation, mostly suffer from com-
putational inefficiency and bias from implementing parameters [4], [7].
Thus, they are not yet feasible for long-term monitoring in small com-
puters. On the other hand, the spatial EEG features over the scalp sur-
face are of great importance. Destexheet al. [8] and Dvorak [9] pro-
posed to estimate the correlation dimension of multichannel EEG by
using the number of recording sites as embedding dimension of the
state space [10]. Then then-channel EEG data were viewed as a trajec-
tory in n-dimensional state space. In this way they were able to eval-
uate the “global” correlation dimension quantifying the spatial-tem-
poral feature of EEG. Since evaluating the correlation dimension in-
volves slope computation using linear regression, an appropriate linear
scaling region needs to be determined first. This kind of indirect esti-
mation procedure is a crucial drawback in practical situations.

The topological or intrinsic dimensionality of a point set was
introduced to characterize data sets in the field of pattern recognition
[11]–[14]. To improve the computational efficiency, methods for
determining the intrinsic dimension were mostly based on local
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approaches, that is, quantifying the local features in small regions
[13], [15]–[17]. Among them, theK ’s nearest neighborhood (KNN)
analysis provides an approach for directly estimating intrinsic dimen-
sionality [12], [15], [18]. The method is conceptually simple, yet, has
a drawback of spending an enormous amount of time on exhaustive
searches for theKNN distance. Thus, we develop a new algorithm
for searching theKNN distance, which saves a lot of computer
time. When adapted to multichannel EEG analysis to explore the
spatial-temporal characteristics, the intrinsic dimensionality reflects
variations in the degree of waveform complexity in a data set. Hence
the estimated result is to be called “complexity index (�).”

II. A N IMPROVEDKNN ALGORITHM FOREVALUATING �

LetX = fXig
N

i=1 be the set of points on the EEG trajectory, where
Xi is ann-dimensional point constructed from then-channel EEG sig-
nals. For instance,Xi = (F3(i); F4(i); Cz(i); P3(i); P4(i)) rep-
resents a point on the five-dimensional space, whose coordinates (de-
grees of freedom) are brain electrical potentials recorded from sites F3,
F4, Cz, P3 and P4, respectively. For each point in the setX (e.g.,Xi), a
KNN hypersphere is determined and formed by theK ’s nearest neigh-
boring (NN) pointsfVijg

K
j=1,Vij 2 X, andVi1 = Xi. TheXi is

called the seed point of theith hypersphere. Inside theith hypersphere,
the largest distance to the seed pointXi is

di;KNN = kViK �Xik (1)

where the operatork�k evaluates the Euclidean distance. Fukunaga and
Flick [15] analyzed the pattern classification error and obtained

Efd(K+1)NNg

EfdKNNg
= 1 +

1

Kn
(2)

whereEfdKNNg is the first-order moment ofdKNN. ThedKNN de-
notes theKth NN distance of any hypersphere inX. Equation (2)
points out the effect ofK on classification error for a given number of
space dimensionn. Fukunaga and Flick aimed at quantifying the pat-
tern classification error in theKNNmodel. They hypothesized ann-di-
mensional space for the pattern vectors, wheren is an integer. In order
to quantify the global waveform complexity of multichannel EEG, we
apply the concept of fractional dimensionality of a strange attractor.
Following their work, we derived the equation for evaluating the com-
plexity index� as follows [19]:

� =
1

K

Efd(K+1)NNg

EfdKNNg
� 1

�1

: (3)

Equation (3) is actually implemented in the algorithm as

� =
1

K

d(K+1)NN

dKNN

� 1

�1

(4)

whered(K+1)NN anddKNNare the temporal average ofdi;(K+1)NN

anddi;KNN, respectively, fori = 1; . . . ; N . Apparently,� may be a
fractional number.

One advantage of the complexity index is the easy implemen-
tation of computing (4). A large portion of the computer time is
spent on searching for theKNN and (K + 1)NN distances. To
find di;KNN and di;(K+1)NN for the seed pointXi, an intuitive
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approach is to create and then dynamically update a data buffer
array� = f�i;1; . . . ;�i;K ;�i;K+1g so that� always stores the
(K + 1)’s smallest distances in sequence when a new interpoint
distance is computed. The detailed strategy is explained as follows.
Consider that the seed point isXi. The algorithm in the beginning
sorts the first(K + 1)’s interpoint distances,dij = kXj � Xik ,
j = 1; . . . ; (K + 1), and keeps them in sequence in the data buffer
�. The elements in the sorted data array satisfy:�i;m � �i;n

if 1 � m < n � (K + 1). Each of the remaining distances,
dij ; j = (K + 2); . . . ; N , is then compared with every element in
�. If �i;m�1 < dij < �i;m; dij is inserted in themth position
and the�i;K+1 is excluded from the buffer. The competition process
is performed on each newly computed interpoint distance. Finally,
the data buffer stores the smallest(K + 1)’s distances. Accordingly,
di;KNN = �i;K anddi;(K+1)NN = �i;K+1. The complexity index�
is then computed by using (4). Undoubtedly, computer time required
by the algorithm implemented in this manner is highly dependent on
the values ofK andN . A largeK costs more effort in the competition
process. A largeN indicates a large number of distances to be
computed.

In this paper, the authors propose an approach that does not require
computing all the interpoint distances and reduces the exhaustive
sorting process. The computer time can be significantly reduced
especially for a large number of data points (N ). Let [X] be anN � n

matrix with its ith row vector representing theith n-dimensional
point Xi on the EEG trajectory. The eigenvector associated with
the largest eigenvalue of the covariance matrix of[X] is denoted by
[�], a 1 � n row matrix. Andk�k = 1. Then the transformation
[Y] = [X][�]T results in anN � 1 column matrix containingN
scalarsyi; i = 1; . . . ; N . In other words, the transformation projects
the n-dimensional state-space points onto the principal axis derived
from the largest eigenvector. As a result, the interpoint distances of
Xi: dij ; j = 1; . . . ; N are mapped to

�ij = kyj � yik = k(Xj �Xi)�
Tk (5)

which implies

�ij = kyj � yik � kXj �Xik = dij (6)

according to the Cauchy-Schwartz inequality. Using�ij as reference,
the sorting process for determining thedi;KNN anddi;(K+1)NN be-
comes less laborious. Let[S] denote the sorted column matrix of[Y]
so that its elements satisfys1 � s2 � � � � � sN . Fig. 1 illustrates
the transformation process. We shall describe the proposed method
for finding thedi;KNN anddi;(K+1)NN by using Fig. 2. Assume that
sp = yi, that is,yi is in thepth order on the principal axis following
the transforming process

Xi
�
�! yi

sorting
�! sp: (7)

Then the algorithm examines those points in the neighborhood ofsp :
fsp�1; sp�2; . . .g. For each neighboring point, its associatedn-dimen-
sional point in[X] and the state-space distance fromXi can be deter-
mined. The computed distances are stored in sequence in a data buffer.
Assume that, after examiningM neighboring points within the dotted
frame(M � K + 1), the largest(K + 1)NN distance is obtained,
which is di;(K+1)NN = kXk � Xik. The algorithm continues ex-
amining, in two-sided direction, the points on the principal axis until
ksr � spk � di;(K+1)NN (left) andkst � spk � di;(K+1)NN (right).
This condition ensures that the remaining points are all farther than
di;(K+1)NN since

di;(K+1)NN � ksr � spk = kyl � yik � kXl �Xik

Fig. 1. The transformation process that maps sixn-dimensional points onto
the principal axis and re-indexes the one-dimensional (1-D) array.

Fig. 2. The search ford andd is completed when the left
and right boundary pointss ands , satisfying (8), are found.

and

di;(K+1)NN � kst � spk = kym � yik � kXm �Xik (8)

according to (6). The search fordi;KNN anddi;(K+1)NN is completed
at this point. As illustrated in Fig. 2, two pointssr andst define the left
and right boundary of the searching region on the principal axis. Note
that, given a seed pointsp, the number of points being searched be-
fore satisfying (8) cannot be estimated by somea priori knowledge of
the EEG space trajectory. Thus, computational complexity cannot be
explicitly determined by parameters likeN , K, andn. An empirical
approach for evaluating the computational efficiency is applied (Sec-
tion III).

To validate the accuracy of the developed method, Table I lists the
average� (denoted by��) evaluated for the model-generated trajectory.
The correlation dimension reported in [20] is shown for comparison.
The �� was computed by averaging the�s over a moderate range of
values ofK (30 � K � 60) to obtain a reliable estimate. The re-
sulting �� approximates well the correlation dimension except for the
Zaslavskii map. Next, we apply the proposed method to the multi-
channel EEG signals and compare its computational efficiency with
that of the straightforward algorithm [see, (4)]. Both algorithms were
programmed in Turbo C. The following results were obtained by exe-
cuting the algorithms on a Pentium-133 notebook computer.

III. RESULTS OFEFFICIENCY COMPARISON

Our previous work has demonstrated the capability of�� in charac-
terizing the spatial-temporal feature of the multichannel EEG signals
[19]. In the paper, the EEG data analyzed were recorded from a pa-
tient who had an epilepsy syndrome called “Benign Partial Epilepsy
of Childhood,” yet had never had obvious epileptic seizures (provided
by Dr. F. Matsuo, Department of Neurology, University of Utah Med-
ical School). Prominent focal-sharp-wave transients appeared several
times. The patient was sleeping during the recording. A 25-channel
electrode array, including 19 channels in the 10–20 system and six
south-hemispherical channels [21], with a common linked-ear refer-
ence was applied. The sampling rate was 200 Hz. In [19], we showed
that the running��curve (window length: 1000 samples, moving size:
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TABLE I
�� ESTIMATED FOR MODEL-GENERATED TRAJECTORIES

a fixed time increment.

Fig. 3. Efficiency comparison for a five-channel EEG with variable lengths
(K = 30).

Fig. 4. Efficiency comparison for a five-channel EEG using variableKs (N =

2000).

Fig. 5. Efficiency comparison for variable channel numbers (K = 30 and
N = 2000).

100 samples,25 � K � 35) was able to identify occurrence of
EEG focal-sharp-wave events and quantify EEG spatial correlation.
The background EEG had a complexity index between 4.0 and 4.5,

Fig. 6. Number of interpoint distances required to obtaind and
d for each seed point.

which was reduced to3:0 � 3:5 when focal-sharp-wave transient oc-
curred. The analysis demonstrated that the running�� curve might be
used to detect the occurrence of particular events in the EEG moni-
toring. On the other hand, an array composed of channels with quite
different waveform patterns (spatially uncorrelated) tended to have a
larger��. Thus, the�� analysis may be a tool to study the spatial corre-
lation in the multichannel EEG signals.

In this paper, we aim to validate the efficiency of the proposed algo-
rithm. The two algorithms presented in Section II will be referred to
as algorithm-A (the straightforward implementation) and algorithm-B
(the efficient method). The EEG signal is the same one that was
analyzed in [19]. First, a five-channel protocol, involving electrode
sites F3, F4, Cz, P3, and P4, is used to compare the efficiency of
two algorithms for different values ofN , K, andn (Figs. 3–5). For
increasingN , this reduction becomes more evident. The efficient
algorithm (B) reduces the computational time to less than half the time
required by algorithm-A at 1500 samples, and it has a much slower
slope. The algorithm-A undoubtedly needs to evaluateN � (N � 1)
interpoint distances for anN -point state-space EEG trajectory. The
algorithm-B spends less than 10% of the total computational time to
find the principal axis and to project then-dimensional state-space
points onto the principal axis. Most of the computational time is con-
sumed by the computation of interpoint distances. However, unlike the
algorithm-A, the number of interpoint distances being computed by
the algorithm-B cannot be equated. An empirical approach is applied
to show how the algorithm-B achieves its computational efficiency.
Let Ni denote the number of interpoint distances being computed by
algorithm-B in order to obtaindi;KNN anddi;(K+1)NN for each seed
pointXi; i = 1; . . . ; N , (N = 2000,K = 30). Note thatNi = N�1
for all i if applying algorithm-A. The result for algorithm-B is plotted
in Fig. 6. As addressed in Section III, there exists no explicit relation
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between the number of points being searched and the parameters of
the EEG trajectory, which is corroborated in this figure. As shown in
Fig. 6, mostNi are smaller than 1000(N=2). The average ofNi, �Ni,
is 740. Consequently, the overall computational time can be reduced
by at least one half. Finally, according to our experience and the
mannerKNN distance is computed, the computational time required
is approximately the same for any givenK,N , andn, independent of
the EEG spatial-temporal complexity.

IV. CONCLUSION

This paper demonstrated an efficient methodology for computing the
intrinsic dimensionality used to quantify the spatial-temporal feature of
the multichannel EEG signals. Then-dimensional points on the EEG
trajectory (the set[X]) were first projected onto the principal axis de-
rived from the largest eigenvector of the covariance matrix of[X]. The
order and the distances of the projected 1-D points provide a guideline
for the algorithm to confine its searching scope to a smaller region.
The algorithm need not perform the exhausting search for allKNN
distances. The computational time, thus, decreases substantially.

REFERENCES

[1] T. Kalayci and Ö Özdamar, “Wavelet preprocessing for automated neural
network detection of EEG spikes,”IEEE Eng. Med. Biol. Mag., vol. 14,
no. 2, pp. 160–166, 1995.

[2] M. v. Gils, A. Rosenfalck, S. White, P. Prior, J. Gade, L. Senhadji, C.
Thomsen, I. R. Ghosh, R. M. Langford, and K. Jensen, “Signal pro-
cessing in prolonged EEG recordings during intensive care,”IEEE Eng.
Med. Biol. Mag., vol. 16, no. 6, pp. 56–63, 1997.

[3] A. Babloyantz and A. Destexhe, “Low-dimensional chaos in an instance
of epilepsy,”Proc. Nat. Acad. Sci. USA, vol. 83, pp. 3513–3517, 1986.

[4] P.-C. Lo and J. C. Principe, “Dimensionality analysis of EEG segments:
Experimental considerations,” inProc. Int. Joint Conf. Neural Network
Soc., 1989, pp. 693–698.

[5] P. E. Rapp, T. R. Bashore, J. M. Martinerie, A. M. Albano, and A. I.
Mees, “Dynamics of brain electrical activity,”Brain Topogr., vol. 2, pp.
99–118, 1989.

[6] J. P. M. Pijn, J. V. Neerven, A. Noest, and F. H. Lopes da Silva, “Chaos
or noise in EEG signals: Dependence on state and brain site,”Electroen-
ceph. Clin. Neurophysiol., vol. 79, pp. 371–381, 1991.

[7] I. Yaylali, H. Koçak, and P. Jayakar, “Detection of seizures from small
samples using nonlinear dynamic system theory,”IEEE Trans. Biomed.
Eng., vol. 43, pp. 743–751, July 1996.

[8] A. Destexhe, J. A. Sepulchre, and A. Babloyantz, “A comparative study
of the experimental quantification of deterministic chaos,”Phys. Lett. A,
vol. 132, pp. 101–106, 1988.

[9] I. Dvorak, “Takens versus multichannel reconstruction in EEG correla-
tion exponent estimations,”Phys. Lett. A, vol. 151, pp. 225–233, 1990.

[10] J. Wackermann, D. Lehmann, I. Dvorak, and C. M. Michel, “Global di-
mensional complexity of multi-channel EEG indicates change of human
brain functional state after a single dose of a nootropic drug,”Electroen-
ceph. Clin. Neurophysiol., vol. 86, pp. 193–198, 1993.

[11] K. Fukunaga and D. R. Olsen, “An algorithm for finding intrinsic di-
mensionality of data,”IEEE Trans. Comput., vol. C-20, pp. 176–183,
Feb. 1971.

[12] K. W. Pettis, T. A. Bailey, A. K. Jain, and R. C. Dubes, “An intrinsic
dimensionality estimator from near-neighbor information,”IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-1, pp. 25–37, Jan. 1979.

[13] P. J. Verveer and P. W. Duin, “An evaluation of intrinsic dimension-
ality estimators,”IEEE Trans. Pattern Anal. Machine Intell., vol. 17, pp.
81–86, Jan. 1995.

[14] J. Bruske and G. Sommer, “Intrinsic dimensionality estimation with op-
timally topology preserving maps,”IEEE Trans. Patt. Anal. Machine
Intell., vol. 20, no. 5, pp. 572–575, 1998.

[15] K. Fukunaga and T. E. Flick, “Classification error for a very large
number of classes,”IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-6, pp. 779–788, June 1984.

[16] A. Passamante and M. E. Farrell, “Characterizing attractors using local
intrinsic dimension via higher-order statistics,”Phys. Rev. A, vol. 43, no.
10, pp. 5268–5274, 1991.

[17] O. Michel and P. Flandrin, “Local minimum redundancy representation
of a system for estimating the number of its degrees of freedom,” in
Proc. IEEE Signal Processing Workshop Higher-Order Statistics, 1993,
pp. 341–345.

[18] G. V. Trunk, “Statistical estimation of the intrinsic dimensionality of a
noisy signal collection,”IEEE Trans. Comput., vol. C-25, pp. 165–171,
Feb. 1976.

[19] P.-C. Lo and W.-P. Chung, “An approach to quantifying the
multi-channel EEG spatial-temporal feature,”Biomaterial J., vol.
42, no. 7, pp. 901–916, May 2000.

[20] P. Grassberger and I. Procaccia, “Characterization of strange attractors,”
Phys. Rev. Lett., vol. 50, no. 5, pp. 346–349, 1983.

[21] F. Matsuo, “Expanded head surface EEG electrode array: An application
to display the voltage topography of focal epileptiform discharges of
mesiotemporal origin,”J. Clin. Neurophysiol., vol. 8, no. 4, pp. 442–451,
1991.

A Self-Oscillating Detuning-Insensitive Class-E
Transmitter for Implantable Microsystems

Babak Ziaie*, Steven C. Rose, Mark D. Nardin, and Khalil Najafi

Abstract—This paper describes a low-cost, self-oscillating, detuning-in-
sensitive, class-E driver for transcutaneous power and data transmission
to implantable microsystems. A voltage feedback scheme using a fast com-
parator for zero-crossing detection and a CMOS start-up circuit were used
to stabilize the class-E operation for various transmitter coil inductance
values. This technique solves the common problem of mismatch between
the switching frequency of the driving device and the resonant frequency of
the load network, which can cause excessive power loss and damage to the
active device. Data is transmitted by AM modulation of the carrier through
switching the power supply between two levels. The transmitter uses a 9-V
supply, consumes 212 mA, operates at 3.9 MHz, and has an efficiency of
71%. The efficiency is stable ( 2% change) against 13% variations in
the inductance value of a pancake shaped transmitter coil.

Index Terms—Biomedical microsystems, class-E transmitter, im-
plantable electronics, inductive powering, transcutaneous links.

I. INTRODUCTION

Telemetry inductive powering is an attractive alternative to batteries
in implantable devices that require extended operation lifetime [1]–[3].
The telemetry link in most of these applications is a transformer-like
coupled pair of coils that has been previously optimized for power
transfer efficiency [4]. Recent advances in micromachining and mi-
crotechnology have enabled investigators to fabricate miniature im-
plantable devices [5], [6]. Due to the small size of the receiver coil
(1-mm diameter, 3-mm length in [6]), the power transmission effi-
ciency in many of these microdevices is rather low [with the implanted
system receiving< 1% of the average emitted radio-frequency (RF)
energy]. In order to supply enough power to the receiver coil, a high-ef-
ficiency transmitter/amplifier must be used. Class-E power amplifiers
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