
Blues for Gary



Mini-Languages for Impro-Visor

Robert Keller,
David Morrison, Stephen Jones,

Martin Hunt, Aaron Wolin
Harvey Mudd College

Steve Gomez
Dartmouth College



Support Acknowledgment

• Mellon Foundation
Faculty Enhancement Grant

• NSF REU
(Research Experience for Undergraduates)



Domains

• Human-Computer Interfaces
• Data Language Design
• Jazz Improvisation
• Music Education
• Melody Generation AI



Jazz Improvisation
• Scenario: A jazz group playing a standard tune.

• “Head”: The musicians play an arrangement of the
original melody.

• “Choruses”: Some or all musicians improvise solos
over the same, or related, chord changes to the
original

• Throughout: Rhythm section improvises
accompaniment.



Improvisation Techniques
• Most musicians employ, to varying extents, a
practiced vocabulary of melodic fragments called
“licks”.

• Most study solos of other musicians to get ideas.

• Sometimes these solos are transcribed or
memorized, but rarely performed intact.

• Some pre-construct their own solos, to be treated as
above.



Impro-Visor (Improvisation Advisor)

• Software to enhance the user’s ability to
• Improvise interesting solos.
• Understand tunes and jazz harmony.

• By
• Engaging him/her in the act of creation.
• Providing support in the form of musical

knowledge (“advice”).
• Generating melodies as usable examples.



Impro-Visor Usage

• User supplies chord sequence.

• Impro-Visor supplies musical knowledge,
such as licks.

• User can save licks for posterity.

• Can also be used for transcription,
composition.



Related Work: “Band-in-a-Box”

• Commercial software oriented to practice or,
marginally, performance accompaniment:

• Able generate entire “improvised” solo without
user’s involvement (not our main purpose).

• A proprietary rote database seems to be used.

• Elements of the solo recur after awhile.



Related Work: “Band-out-of-a-Box”

• Belinda Thom’s PhD Thesis

• Tried to use statistical theory to learn style
of soloist.

• Create companion for “trading fours”.



Related Work: “GenJam”

• Created by Al Biles, RIT.
• Generate licks by genetic algorithm.
• React to soloist in real-time.
• One man + one computer band.



Example Solo Fragment in Impro-Visor

Optional color coding for visual feedback:
black: chord tone
green: “color” tone (aka “tension”)
blue: approach tone to one of the above
red: none of the above (error?)



Principle of Modularity

• Solos can be constructed by concatenating
library segments:
• Cells (over one chord, uniform note durations)

• Idioms (over one chord, familiar, non-uniform)

• Licks (over one or more chords)

• Quotes (borrowed from another song or solo)

• Like “mix-and-match” book or
Mozart’s dice game



Mix and Match Book



Six Cells over two chords …
(Dm9 G13 are examples of two chords often found in succession.)



… produce nine different licks.



Giving Advice to the User

selected “slot”



Advice Pop-Up:
Things Seasoned Players Know,

but Novices Don’t

selected “slot”



User/Admin Configurability
• User-friendly S-expression encodings.
• Several Cohesive Mini-Languages

• Leadsheet language (for tune or solo)
Vocabulary language
• Chord definitions
• Scale definitions
• Licks
• Styles

• Grammar language
• For lick generator



(S)

There was a silver bullet.



XML (S)

There was a silver bullet.



Leadsheet Mini-Language
Designed for Musician’s Ease of Use
FM69 | Bb13     | FM69      | F#m9 B7      | 
Bb13 | Dbm7 Gb7 | FM69      | NC D7alt / / | 
Gm9  | C7b9     | F69 D7alt | Gm9 C9       | 
r2 a8 r8 c+8 f1
d+8
c+8 bb8 r4 a8 r8 c+8 e2+2/3+16/3
eb4
d2/3+16/3 r8 ab8 c+8 d+8 f+8
e+4 cb8/3 bb8/3 g8/3 gb4 r8 d8
e8 r8 a8 c+2+8
r4 eb+8 c+8 ab8 g8 f#4
r2/3+16/3 d8 f8 a8 c+8 a8
bb4 g8/3 f8/3 e8/3 f8 db2/3+16/3
c2 bb8 c+8 eb+8 c+8
d+8 bb8 g8 f8 e2



The Lick Mini-Language



Lick Generation:
Machine Learning

• Totally random choices don’t sound good.

• Original purpose was to provide examples
(good and bad) to train a classifier (e.g.
neural network).

Criticlick
good

bad



Simple Lick Generator
• Given two-chord sequence and number of beats…

• Specify note probabilities.

• Specify range of durations (e.g eighth-note to
quarter-note).

• Specify probability of a rest instead of a note.

• Specify maximum and minimum jump intervals.

• Choose randomly within these parameters.



Results

• For eighth-note only durations, 4-beats,
with repetition-avoidance:
• 90% “useable” licks.

• Difficult to generate bad examples.

• Therefore not so good for training
classifier.



Results

• For eighth-note and quarter note
8 beats, with repetition-avoidance:
• 60-70% useable

• For wider range of durations and
>8 beats, lines often lack coherence
due to randomness.



Grammar-Based
 Lick Generator

• Use probabilistic context-free grammar
to generate annotated rhythms, then

• Fill in note values probabilistically with
choices outlined in grammar.

• Productions humanly-designed to
provide coherence.



Grammar Mini-Language
(base (P 0) () 1)
(base (P 1) (Seg1) 1)
(base (P 2) (Seg2) 1)
(base (P 3) (Seg2 Seg1) 1)
    
(rule (P Y) (Seg2 (P (- Y 2))) 0.25)
(rule (P Y) (Seg4 (P (- Y 4))) 0.75)
(rule (Seg4) (Seg2 V4 V4) 0.52)
(rule (Seg4) (V8 N4 N4 N4 V8) 0.01)
(rule (Seg4) (V4 Seg2 V4) 0.47)
(rule (Seg2) (N2) 0.06)
(rule (Seg2) (V4 V4) 0.6)
(rule (Seg2) (V8 N4 V8) 0.12)
(rule (Seg2) (H4. N8) 0.16)
(rule (Seg2) (H4/3 H4/3 H4/3) 0.06)
(rule (Seg1) (C4) 1)

(rule (V4) (N4) 0.22)
(rule (V4) (V8 V8) 0.72)
(rule (V4) (H8/3 H8/3 H8/3) 0.05)
(rule (V4) (H8/3 H8/3 A8/3) 0.01)
(rule (V8) (N8) 0.99)
(rule (V8) (H16 A16) 0.01)
 (rule (N2) (C2) 1)
(rule (N4) (C4) 0.5)
(rule (N4) (L4) 0.2)
(rule (N4) (S4) 0.5)
(rule (N4) (A4) 0.01)
(rule (N4) (R4) 0.25)
(rule (N8) (C8) 0.4)
(rule (N8) (L8) 0.2)
(rule (N8) (S8) 0.4)
(rule (N8) (A8) 0.01)
(rule (N8) (R8) 0.1)





Results for Grammar-Based
Generator

• Really good (opinion).
• Works over any chord sequence.
• Can construct an entire chorus or

multiple choruses.
• Does not use database.
• Tremendous variety: Frequently results

in licks not heard before.



Lick Generator Examples



Conjecture

• An implied grammar probably comes
closest to what professionals use
implicitly (without thinking) in
improvising.



Other AI/Language
 Facets of Impro-Visor

• Chord voicing and voice-leading
algorithms

• Voicing: how notes of chord are
stacked

• Voice-leading: smooth flow of notes of
one chord into the next



Chord & Voicing Mini-Language
(chord
    (name CM69)
    (pronounce C major six nine)
    (family major)
    (spell c e g a d)
    (priority d e a g c)
    (approach (c b c#) (e eb f) (g f# g#) (a g# bb) (d c# eb))
    (color b f#)
    (voicings
        (left-hand-A (type closed) (notes e g a d+))
        (left-hand-B (type closed) (notes g d+ e+ a+))
        (quartal (type open) (notes e a d+ g+))
        (red-garland-A (type hyper-open) (notes e g a d+) (extension d++ g++ d+++))
        (red-garland-B (type hyper-open) (notes g d+ e+ a+) (extension d++ g++ d+++)) )
    (scales
        (C major)
        (C lydian)
        (C bebop major))
    (extensions CM69#11)
    (substitute CM7 CM9 CM69#11) )



Bass-Line and Comping
Generation

• Automatic creation of bass lines and
“comping” according to another set of
probabilistic rules.

• Rules are part of style mini-language.



Style Mini-Language
(style
    (name swing)
    (swing 0.67)
    (bass-pattern (rules B4 S4 C4 A4) (weight 10))
    (bass-pattern (rules B4 C4 C4 A4) (weight 5))
    (bass-pattern (rules B4 S4 C4 S4) (weight 3))
    (drum-pattern
        (drum 51 X4 X8 X8 X4 X8 X8)
        (weight 10)
        )
    (chord-pattern (rules X1+1) (weight 7))
    (chord-pattern (rules X1) (weight 7))
    (chord-pattern (rules X2) (weight 8)) )



Conclusions and Evaluation
• Original purpose of Impro-Visor was to educate users

and promote their creativity.

• Successfully used for two semesters by students in a
jazz improvisation class.

• Grammar-driven lick generation makes the tool itself
creative: thousands of solos without a repeat.

• Other AI aspects present: voicing selection, bass-
lines and comping



Future Work

• Further work on critic machine-learning
experiment.

• Maybe incorporate critic neural net.
• Non-chordal lick selection.
• Database efficiency.
• Real-time performance.
• Grammar learning.




