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Abstract. We describe an unsupervised learning technique to facilitate 

automated creation of jazz melodic improvisation over chord sequences. 

Specifically we demonstrate training an artificial improvisation algorithm based 

on unsupervised learning using deep belief nets, a form of probabilistic neural 

network based on restricted Boltzmann machines. We present a musical 

encoding scheme and specifics of a learning and creational method. Our 

approach creates novel jazz licks, albeit not yet in real-time. The present work 

should be regarded as a feasibility study to determine whether such networks 

could be used at all. We do not claim superiority of this approach for 

pragmatically creating jazz.  

1   Introduction 

Jazz musicians strive for innovation and novelty in creating melodic lines, in the 

context of chord progressions. Because of the structural characteristics of typical 

chord progressions, it is plausible that a machine could be taught to emulate human 

jazz improvisation.   To this end, one might explicitly state the rules for jazz 

improvisation, e.g. in the form of grammars [1]-[2]. But structural rules may risk 

losing some of the flexibility and fluidity for which jazz is known. Here we try 

exploring a more organic approach: instead of teaching a machine rules for good jazz, 

we give the machine examples of the kind of melodies we want to hear stylistically, 

and let it determine for itself the features underlying those melodies, so that it can 

create similar ones. 

Our current exposition concentrates on a single approach to learning, heretofore 

not applied to music creation as far as we are aware: deep belief networks (DBNs), a 

multi-layered composition of restricted Boltzmann machines (RBMs), a specific type 

of stochastic neural network. We focus on the creation of melodies, and do not 

attempt to tackle broader issues of real-time collaborative improvisation. In other 

words, our work tries to explore the application of a specific neural net technology, as 

opposed to trying solving the general problem of creating an improvising agent by 

any means necessary. At present, our learning method is necessarily off-line due to a 

fairly slow training method, but we hope this can be improved in the future. 
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We were attracted DBNs based on recent expositions of Hinton, et al. [3]-[7]. 

Such machines learn to recognize by attempting to create examples (in the form of bit 

vectors), comparing those examples to training examples, and adjusting their 

parameters to produce examples closer to the given examples, a form of unsupervised 

learning. This seemed to us to be very similar to the way some humans learn to 

improvise melodies by emulation. Although the stochastic nature of DBNs might be 

considered a liability in some application fields, we try to leverage that nature to 

achieve novelty in our generated melodies, a characteristic of the creativity required 

for jazz improvisation. Thus our objective is different than that of Hinton; we want to 

create interesting melodies and are less concerned about their recognition. 

2   Restricted Boltzmann Machines 

A restricted Boltzmann machine (RBM) is a type of neural network introduced by 

Smolensky [8] and further developed by Hinton, et al. [3]-[7].  It consists of two 

layers of neurons: a visible layer and a hidden layer.  Each visible neuron is connected 

to each hidden neuron, and vice versa, through a series of symmetric, bi-directional 

weights. 

A single training cycle for the machine takes a binary data vector as input, 

activating its visible neurons to match the input data.  It then alternates activating its 

hidden nodes based on its visible nodes, and activating its visible nodes based on its 

hidden nodes.  Each node is activated probabilistically based on a weighted sum of all 

nodes connected to it.  Since nodes within a layer are not connected to each other, 

activation of the hidden nodes depends only on the states of the visible nodes, and 

vice versa.  After the network has stabilized, the new configuration of visible nodes 

can be viewed as output.  

 

 
Figure 1: A restricted Boltzmann machine.   

The first node B of each layer is a fixed bias node. 

 

The objective of an RBM is to learn features in sets of data sequences.  Toward 

this end, we implemented the contrastive divergence (CD) learning algorithm, as 

described by Hinton [3].  We modeled our implementation on an excellent tutorial 

supplied by Radev [9].  The CD algorithm allows for relatively inexpensive training 
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given the large number of nodes and weights in our networks.  Once trained, an RBM 

can take a random data sequence and, through a series of activations, generate a new 

sequence that emulates features from the training data.  

While a single RBM is capable of learning some patterns in the training data, 

multiple RBMs can be layered together to form a much more powerful machine 

known as a deep belief network (DBN) [4].  Multiple RBMs are combined by 

identifying the hidden layer of each RBM with the visible layer of the one below.  

The second RBM is able to learn features about the features learned by the first RBM, 

and thus, the entire layered machine should be able to learn far more intricate patterns 

than a single RBM could.  Figure 2 illustrates the structure of a DBN. 

 

 
 

Figure 2: An illustration of a 3-layer Deep Belief Network 

3 Data Representation 

In order to train DBNs on musical data, we first encode the music as bit vectors. We 

divide each beat into beat subdivisions called slots, with the number of slots 

dependent on the smallest note duration to be represented.  For our experiments, we 

chose twelve slots per beat, which allows us to represent all duplet or triplet note 

durations down to a sixteenth note triplet. 

Each slot is filled by a block of thirty bits, divided into twelve chord bits and 

eighteen melody bits. A description of the melody bits follows. Twelve bits are used 

as a one-hot encoding for the chromatic pitch classes from C to B over one octave, 

four bits are used as a second one-hot encoding to designate one of four octaves, one 

bit designates a sustained extension of the previous note, i.e. the note is not attacked 

anew, and one bit represents a rest. If a note is being attacked at a given slot, its 

corresponding pitch and octave bits are on and all other bits are off. If a note is being 

sustained, then the pitch bits are ignored but the sustain bit is on. Representing 

octaves this way rather than using a single one-hot encoding to represent a four-

octave chromatic range, gave us a significant improvement in training time, by 

reducing the number of pitch nodes in the input layer.  
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The sustained note bit is used to represent the same pitch value as the note 

previously played. Thus notes of long duration will be seen as chains of sustain bits 

being on. Figure 3 shows an example of a melody and its corresponding encoding at a 

coarser resolution of two slots per beat for brevity. 

 
  

Beat Auxiliary  Chromatic Pitch within Octave Octave 

 Sustain Rest C C# D D# E F F# G G# A A# B 1 2 3 4 

1    1             1   

& 1                   

2  1                1   

&       1             

3        1         1   

&           1      1   

4    1              1  

& 1                   

 
Figure 3: A short melodic segment with a coarse encoding (only two slots per beat) 

To improve readability, 0 values are left blank. 

 

Each chord is encoded as twelve bits representing the chromatic pitches from C 

to B. If a pitch is present in a chord, its corresponding bit is on. Melody and chord 

vectors are concatenated to form part of the input to the network corresponding to one 

slot. Thus the machine ideally learns to associate specific chords with various melodic 

features. Because the machine will be seeing more than one slot at a time, as we later 

describe, it can also learn about chord transitions. 

4   Training Data 

We initially trained on a small set of children’s melodies such as “Twinkle, Twinkle, 

Little Star” and “Frère Jacques.” These melodies were all in the same key and 

generally consisted of simple rhythms and notes that were in their respective chords. 

Once we taught a machine to learn from, and then create, similarly simple melodies, 

we moved on to teaching larger networks jazz. 

Our primary dataset was a large corpus of 4-bar jazz licks (short coherent 

melodies) cycling over the common ii-V-I-VI7 “turnaround” chord progression in a 

single key. The ii-V-I is a very common cadence in jazz; the VI7 chord is a connecting 

chord that leads one lick into the next for the same progression, VI7 being the 

dominant relative to the ii chord that follows. Most of the licks were either transcribed 

from notable jazz solos, or hand constructed, some with the help of the grammar-

based “lick generator” of the Impro-Visor software tool [10]. 
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5 Learning Method 

Part of our goal is for the machine to learn how to create melodies that transition 

between chords in a progression. To add flexibility, rather than training our machine 

on inputs of all 4 bars of a lick at once, we break our data up into smaller windows of 

1 measure each. For each 4 bar lick, we start the “window” at the beginning of the 

first bar. Then we move the window forward by one beat and look at the next 4 beats 

starting at beat 2 of the measure for the next window. We move the window forward 

by a beat at a time, taking measure-long snapshots of the window, until we reach the 

end of the 4-bar lick. In this way a single 4-bar lick is broken up into 13 overlapping 

shorter windows that are used sequentially as the inputs to the network. The scenario 

is analogous to that shown in Figure 4, except there are no question marks during 

training. 

For creating new melodies, we start the machine with a “seed” consisting of 

specified chord bits defining our desired chord progression, and random melody input 

bits. The chord bits in the first layer of the machine are clamped so that, during any 

given creation cycle, they cannot be modified by the stochastic nature of the machine.  

In creating a new melody, we use a procedure analogous to windowing during 

training. We start by generating the first few beats of a new melody and then 

clamping their corresponding bits. As each successive beat is generated, the whole 

melody and chord sequence is shifted forward to make room for the next beat. So in 

general, the machine only generates one beat at a time, but uses clamped chords and 

clamped beats of the preceding melody to influence the note choices. This process is 

illustrated in Figure 4.  

 
 

Figure 4: An illustration of the process of windowed generation.   

The RBM generates small segments of melody over a fixed chord seed.   

A newly generated segment is then fixed and used to generate the next segment of melody. 
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During the machine’s final activation of its visible layer (which constitutes the 

newly generated melody), we group certain bits together for special consideration. 

Rather than letting the machine activate every bit probabilistically, we look at each 

slot individually and activate only the pitch bit and octave bit with the highest 

probabilities of activation among their group. Thus the machine is forced to choose 

whether to sustain, rest, or start a new pitch. We found that this approach allows for 

good variety of created melodies, while still resonating well with the given chords. 

We also want to know if the machine can learn to create licks over a ii-V-I-VI7 

chord progression in an arbitrary key.  Thus, we included the option to transpose each 

input into different keys and train on the transpositions simultaneously. 

We implemented all of the functionality described thus far as a stand-alone tool 

we call “RBM-provisor” that we have made publicly available [11]. The tool is 

written in Java and supports input and output via the leadsheet format [12] used by 

Impro-Visor, so that the user can work with readable, symbolic encodings, rather than 

bit-vectors. 

6 Results 

Our initial experiments used our dataset of short segments of children’s melodies, 

training on small 2-layer machines for 100 epochs. Results were encouraging, with 

chosen notes fitting well into the simple chords and flowing together melodically. 

Figure 5 shows a children’s melody created over a simple chord progression. After 

achieving the ability to create stylistically similar melodies from a set of simple 

examples, we moved on to the more complex problem of learning jazz. 

 

 
Figure 5: An example of a created children’s melody over a specified chord progression. 

 

In attempting to produce a successful jazz creation network, we experimented 

with various aspects of networks, including number of layers, number of nodes per 

layer, number of training epochs, and many others.  We ultimately settled on a 3-layer 

network containing 1441 input nodes (4 beats x 12 slots per beat x 30 bits per slot + 1 

bias), with 750, 375 and 200 hidden nodes respectively.  A typical training involved 

250 epochs on about 100 four-measure licks, which takes about nine hours on an 

inexpensive desktop computer. 

The first stave of Figure 6 shows a sample of training data, with the second stave 

showing a typical lick created by the network. For comparison, the third stave shows 

random notes at the same resolution of 12 slots per beat. When analyzing the created 

music using Impro-Visor [10], we found the vast majority of generated notes were in 

the chord, with occasional color tones (tones not in the chord, but sonorous with it), 
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which is totally acceptable.  Foreign tones were hardly ever present.  Created 

melodies tended to avoid large interval jumps and rarely skipped octaves. 

Additionally, we found the training method was able to deal well with 

transpositions.  After training on four copies of each of our inputs, transposed up 0, 1, 

2, and 3 semitones from the original, the machine still created chord-compatible 

music regardless of the set of chords that was provided as a seed.  We have yet to test 

jazz generation on more than four transpositions due to the extensive added training 

time required for transposing inputs to all twelve keys.  Nonetheless, we are 

optimistic regarding our machine’s ability to handle any number of transpositions, 

given sufficient nodes and adequate training time. 

The reason that ability to transpose is viewed as important is that, in jazz music, 

the chord progressions often have implied abrupt key changes that are not labeled as 

such explicitly. Ideally, an improvisational algorithm would be able to respond to 

chord changes based on the chords in whatever relative transpositions they occur, 

rather relative to a fixed reference key. For example, in the standard tune “Satin 

Doll”, one finds an extended cadence Am7 D7 Abm7 Db7 C. The sub-progression 

Abm7 Db7 is the same as Am7 D7 transposed down a half-step. It would be more 

economical and modular to train a network on all transpositions of Am7 D7 that it 

would be to train it on all contexts that might surround that two-chord sequence. 

We noticed some differences between input data and generated music.  While 

half-step intervals were common in our inputs, generated licks tended to avoid them – 

skirting off-chord approach tones and opting instead for more familiar chord tones.  

The most striking difference between the two sets of music related to rhythms.  While 

our inputs contained notes of duplet and triplet rhythms, our outputs contained almost 

exclusively duplet rhythms.  This issue will be discussed in greater detail in the next 

section.  

 

 

 

 
 

Figure 6: The first stave is a sample from our training data licks. 

     The second stave is a lick that was generated by a trained deep belief network. 

The third stave shows random notes generated at the resolution of the network. 

The fourth stave shows incoherence using selection not based on maximum probability. 

In all cases, red notes represent discords. 
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Other approaches tried included selecting bits proportional to the neuron probability 

distribution, rather than always choosing the maximum probability. However, this 

produced melodies that were more disjointed and less coherent rhythmically, as in the 

bottom stave of Figure 6. We also experimented with encodings that included beat 

information, such as which beats were stronger. The results for such encodings were 

not superior to those for the chosen encoding presented here. 

 

At this juncture, using deep belief networks would not be our first choice for a lick 

generator in a jazz education tool such as Impro-Visor [10]. The quality of licks 

generated by Impro-Visor’s grammatical approach is sufficiently superior 

qualitatively to those generated by our DBN that it would be pointless to conduct a 

third-party blindfold test. The other drawback to DBNs is the large training time. On 

the other hand, DBN’s may eventually prove to be less algorithmically biased than an 

unsupervised approach such as that in [2], which relies on clustering and Markov 

chains, and it is possible that the training time issue can be alleviated. 

7 Future Work 

The successes of our initial deep-belief improvisor are encouraging, but there is still 

much potential for improvement.  Despite training on inputs containing both triplet 

and duplet rhythm patterns, our machine created mostly duplet rhythm patterns.  We 

hypothesize that this results from a predominance of duplet rhythms in our training 

set, overshadowing the examples of triplet rhythms.  Ideally, our machine should be 

able to generate triplet patterns at a lower frequency than duplet patterns, rather than 

excluding them from generation altogether. It is possible that a different note 

generation rule might yield more variety, but we have yet to find one that doesn’t also 

result in less coherence. 

Additionally, the music generated by our trained DBN tends to produce 

disproportionate numbers of repeated pitches, instances in which the same note is 

played twice in a row, compared with their relatively low frequency of occurrence in 

the training data.  Repeated notes in jazz may tend to sound static and immobile, and 

we would like to avoid them if possible.  One solution we implemented involved post-

processing our generated music to merge all repeated notes.  Ideally the machine 

should avoid producing as many of them in the first place. It is possible that a 

different encoding might resolve some of these issues. 

Finally, we believe that our work naturally lends itself to the open problem of 

chord inference.  Currently, we give our machine chords as input, and it creates a 

suitable melody.  If we instead provide a melody as input, a DBN similar to ours 

might be able to determine one or more chord progressions that fit the melody. 
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8 Related Work 

Geoffrey Hinton and his associates are responsible for much previous work related to 

restricted Boltzmann machines.  They used RBMs and DBNs for various purposes, 

including handwritten digit recognition [3], facial recognition [7], and movie 

recommendation [6].  These contrast to our use, which is generation. A particularly 

useful tutorial for implementing an RBM has been written by Rossen Radev [9].  Our 

RBM implementation was largely influenced by these sources.  

Early work on generation of music by neural networks includes Mozer [13], who 

used back propagation through time. See Todd and Loy [14] for other early examples. 

Bellgard and Tsang [15] used a different form of extended Boltzmann machine for the 

harmonization and analysis of chorales.  Eck and Lapalme [16] describe an approach 

using LSTM (Long Short-Term Memory) neural networks. Additionally, Page [17] 

utilized neural networks for musical sequence recognition. Please see Todd and 

Werner [18] for a more extensive survey. 

Various other approaches have been taken towards artificial composition. Biles 

[19] used genetic algorithms. Jazz generation using a grammar-based approach was 

demonstrated by Keller and Morrison [1], and learning by Gillick, Tang and Keller 

[3]. Please consult these papers for further references on related approaches. Please 

see Cope [20] for a broad survey of approaches to musical creativity, including neural 

networks. 

9 Summary 

The results of our experiments show that a deep belief network is capable of learning 

certain concepts about a set of jazz licks and in turn creating new melodies. The 

ability of a single machine to generate licks over a chord progression in several 

different keys demonstrates the power and flexibility of the approach and suggests 

that a machine could be taught to generate entire solos over more complex chord 

progressions given a sufficient dataset. While the licks created by our networks 

sometimes under-represented features of the training set, their novelty and choice of 

notes seem adequate to characterize them as jazz.  

 

Despite a moderately-successful proof of concept, deep belief networks would not be 

our first choice for a practical lick-generation tool at this stage of our understanding. 

Our initial objective of exploring the possibility has been achieved, and further 

exploration is anticipated. We continue to be attracted to this approach as the basis for 

an algorithmically unbiased machine learning method. 
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