Learning to Play Jazz with Deep Belief Networks

Greg Bickerman, Harvey Mudd College
Sam Bosley, Stanford University
Peter Swire, Brandeis University
Robert Keller, Harvey Mudd College
Motivation

• People are able to improvise jazz on the spot
• Jazz Improvisation
 – Patterned and structured
 – Creative and novel
• Could a machine learn to improvise as well as a human?
Motivation

• Artificial jazz improvisers already exist
 – GenJam
 • Supervised genetic learning
 – Impro-Visor
 • Extensive musical knowledge built in

• Interested in unsupervised learning
• Minimal representational assumptions
Restricted Boltzmann Machines

• 2-layer network
 – Visible layer
 – Hidden layer

• Nodes
 – Interconnected
 – Can be set ON or OFF

• Weights
 – Assigned to each connection
 – Symmetric
Activation

• Nodes activated **probabilistically** based on activation states of nodes in opposite layer
 – Compute weighted sum of active connections
 – Activation function determines probability of firing
Activation
Activation

Visible Nodes

Hidden Nodes

0 1 0 0 1
Input / Output

• Input
 – Binary data sequences
 – Mapped onto visible neurons

• Output
 – Identically sized data sequences
 – Read off of visible neurons
Input / Output
Input/Output
Training

• Contrastive divergence method
 – Activate network normally
 – Activate network with inputs “clamped”
 – Adjust weights to make normal activation behave more like clamped activation
Deep Belief Networks

• Use individual RBMs as layers in a larger network

• Hidden layer of one RBM forms input layer of another

• If single RBMs learn features about data, DBMs learn features about features
Encoding Scheme

• Requirements
 – Binary encoding
 – Music must be encoded in a string of standard length
 – Each note must be the same “distance” from every other note
Encoding Scheme

- Break melody into beat subdivisions
- Each subdivision contains 18 bits
 - 1 Sustain Bit
 - 1 Rest Bit
 - 12 Pitch Bits
 - 4 Octave Bits
Encoding Scheme

```
<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>C</th>
<th>C#</th>
<th>D</th>
<th>D#</th>
<th>E</th>
<th>F</th>
<th>F#</th>
<th>G</th>
<th>G#</th>
<th>A</th>
<th>A#</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Legend:
- **S**: Sustain Bit
- **R**: Rest Bit
- **Pitch Bits**: C, C#, D, D#, E, F, F#, G, G#, A, A#, B
- **Octave Bits**: 1, 2, 3, 4
Chord Encoding Scheme

Chord Bits

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>C#</th>
<th>D</th>
<th>D#</th>
<th>E</th>
<th>F</th>
<th>F#</th>
<th>G</th>
<th>G#</th>
<th>A</th>
<th>A#</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CM, FM, GM
Initial Dataset

• Children’s songs
 – 2 measures
 – 8th note resolution
 – Simple chords
 – 14 melodies

• Generated similar songs
Main Dataset

• Jazz licks
 – 4 measures
 – 12 beat subdivisions
 • (32nd triplet note resolution)
 – ii-V7-I-VI7 chord progression
 – 100+ licks
 • Transcribed
 • Handwritten
Windowing

• Rather than training on entire piece at once, break music into “windows”

• Start with the first measure of a lick and gradually move window forward

• Allows learning/generating arbitrary length music sequences with a fixed size network
Windowing

\[\text{Dm}^9 \quad \text{G}^{13} \quad \text{C}^{\text{maj}7} \quad \text{A}^{7/\#5/\#9} \]
Windowing
Windowing
Windowing
Windowing
Generating New Melodies

• Need to specify a chord sequence over which to generate a new melody.

• Chord bits are “clamped” during generation so that they can influence the melody being generated without changing themselves.
Generating New Melodies

• Use a windowing strategy analogous to our windowed training method

• As each successive beat is generated the whole melody and chord sequence shifts forward to make room for the next beat
Generating New Melodies

- Chord Seed
- Random Data
- Generated Melody
- DBN
Results

• Rhythmically stable
• Respects chord tones
• Occasional color tones
• Very few foreign tones
Results

• Trained on transpositions as well
 – Generated music following key of given chord progression
 – Succeeded with up to four transpositions
Example Training Licks
Example Generated Licks
More Generated Examples
Random Music
Future Work – Repeated Notes

• Our machines produced disproportionate numbers of repeated notes

• Can sound static or too immobile for jazz
Future Work – Repeated Notes

• Possible solution: post processing
 – Merge repeated notes together
 – Results in a smoother output, but starts to cross line of unsupervised learning

• Ideally, machine should avoid repeated notes in the first place
Future Work – Training Algorithm

• Slow
 – Optimization
 – Parallelization
 – Adaptive termination

• Sensitive to training presentation order
 – Randomize training inputs
Future Work – Chord Inference

• We believe our work naturally lends itself to the open problem of inferring unknown chords for a melody
 – Currently we provide a chord seed to generate a melody.
 – If we instead provide a melody as input, we could determine which chords fit that melody
Conclusion

• Unsupervised learning algorithm

• Based on probabilistic neural network theory

• Able to create novel jazz licks based on an existing corpus

• Minimal assumptions about musical knowledge